1
|
Charalambous M, Muñana K, Patterson EE, Platt SR, Volk HA. ACVIM Consensus Statement on the management of status epilepticus and cluster seizures in dogs and cats. J Vet Intern Med 2024; 38:19-40. [PMID: 37921621 PMCID: PMC10800221 DOI: 10.1111/jvim.16928] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Seizure emergencies (ie, status epilepticus [SE] and cluster seizures [CS]), are common challenging disorders with complex pathophysiology, rapidly progressive drug-resistant and self-sustaining character, and high morbidity and mortality. Current treatment approaches are characterized by considerable variations, but official guidelines are lacking. OBJECTIVES To establish evidence-based guidelines and an agreement among board-certified specialists for the appropriate management of SE and CS in dogs and cats. ANIMALS None. MATERIALS AND METHODS A panel of 5 specialists was formed to assess and summarize evidence in the peer-reviewed literature with the aim to establish consensus clinical recommendations. Evidence from veterinary pharmacokinetic studies, basic research, and human medicine also was used to support the panel's recommendations, especially for the interventions where veterinary clinical evidence was lacking. RESULTS The majority of the evidence was on the first-line management (ie, benzodiazepines and their various administration routes) in both species. Overall, there was less evidence available on the management of emergency seizure disorders in cats in contrast to dogs. Most recommendations made by the panel were supported by a combination of a moderate level of veterinary clinical evidence and pharmacokinetic data as well as studies in humans and basic research studies. CONCLUSIONS AND CLINICAL RELEVANCE Successful management of seizure emergencies should include an early, rapid, and stage-based treatment approach consisting of interventions with moderate to preferably high ACVIM recommendations; management of complications and underlying causes related to seizure emergencies should accompany antiseizure medications.
Collapse
Affiliation(s)
| | - Karen Muñana
- North Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | - Holger A. Volk
- University of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
Kähn C, Meyerhoff N, Meller S, Nessler JN, Volk HA, Charalambous M. The Postictal Phase in Canine Idiopathic Epilepsy: Semiology, Management, and Impact on the Quality of Life from the Owners' Perspective. Animals (Basel) 2023; 14:103. [PMID: 38200833 PMCID: PMC10778387 DOI: 10.3390/ani14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Dogs with idiopathic epilepsy experience not only the preictal and ictal seizure phases but also the postictal phase. To date, research has primarily focused on the preictal and ictal semiology and therapeutic control of ictal events. Research into the postictal phase's pathophysiology, as a therapeutic target and how it impacts the quality of life, is sparse across different species. Interestingly, even if anecdotally, owners report the postictal period being an impactful negative factor on their quality of life as well as their dog's quality of life. HYPOTHESIS/OBJECTIVES We aimed to assess the semiology and the impact of postictal signs on the quality of life of owners and dogs. METHOD This observational study was carried out using surveys of owners of dogs with seizure disorders. RESULTS The questionnaire was filled out by 432 dog owners, 292 of whom provided complete responses that could be analysed. More than nine out of ten owners (97%) reported the presence of various postictal clinical signs. The dog's and the owner's quality of life was mainly affected by specific postictal signs, i.e., disorientation (dog: 31%; owner: 20%), compulsive walking (dog: 17%; owner: 22%), ataxia (dog: 12%; owner: 6%), and blindness (dog: 17%; owner: 10%). Nearly 61% of the owners felt that the severity of postictal signs was moderate or severe. Rescue antiseizure medications did not have an effect on controlling the postictal signs based on 71% of the responders. In contrast, 77% of the respondents reported that other measures such as rest, physical closeness, and a quiet and dark environment had a positive impact on the postictal phase. CONCLUSIONS AND CLINICAL IMPORTANCE Overall, this survey shows that specific postictal signs are common and have a notable impact on the perceived quality of life of both dogs and their owners. According to the respondents, antiseizure medication might have no influence on the postictal phase in most cases, in contrast to other nonpharmacological measures. Further research on the management of the postictal phase is vital for improving the quality of life of dogs with seizure disorders and their owners.
Collapse
|
3
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
4
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
5
|
Botzanowski B, Donahue MJ, Ejneby MS, Gallina AL, Ngom I, Missey F, Acerbo E, Byun D, Carron R, Cassarà AM, Neufeld E, Jirsa V, Olofsson PS, Głowacki ED, Williamson A. Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields. Adv Healthc Mater 2022; 11:e2200075. [PMID: 35751364 PMCID: PMC11468927 DOI: 10.1002/adhm.202200075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/13/2022] [Indexed: 01/27/2023]
Abstract
Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Collapse
Affiliation(s)
- Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Mary J. Donahue
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Malin Silverå Ejneby
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Alessandro L. Gallina
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| | - Ibrahima Ngom
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Florian Missey
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Donghak Byun
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Romain Carron
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Antonino M. Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Peder S. Olofsson
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
- EMUNE ABNanna Svartz väg 6ASolna171 65Sweden
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices LabCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
7
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
8
|
Castillo G, Gaitero L, Fonfara S, Czura CJ, Monteith G, James F. Transcutaneous Cervical Vagus Nerve Stimulation Induces Changes in the Electroencephalogram and Heart Rate Variability of Healthy Dogs, a Pilot Study. Front Vet Sci 2022; 9:878962. [PMID: 35769324 PMCID: PMC9234651 DOI: 10.3389/fvets.2022.878962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous cervical vagus nerve stimulation (tcVNS) has been used to treat epilepsy in people and dogs. Objective electroencephalographic (EEG) and heart rate variability (HRV) data associated with tcVNS have been reported in people. The question remained whether EEG and electrocardiography (ECG) would detect changes in brain activity and HRV, respectively, after tcVNS in dogs. Simultaneous EEG and Holter recordings, from 6 client-owned healthy dogs were compared for differences pre- and post- tcVNS in frequency band power analysis (EEG) and HRV. The feasibility and tolerance of the patients to the tcVNS were also noted. In a general linear mixed model, the average power per channel per frequency band was found to be significantly different pre- and post-stimulation in the theta (p = 0.02) and alpha bands (p = 0.04). The pooled power spectral analysis detected a significant decrease in the alpha (p < 0.01), theta (p = 0.01) and beta (p = 0.035) frequencies post-stimulation. No significant interaction was observed between dog, attitude, and stimulation in the multivariate model, neither within the same dog nor between individuals. There was a significant increase in the HRV measured by the standard deviation of the inter-beat (SDNN) index (p < 0.01) and a decrease in mean heart rate (p < 0.01) after tcVNS. The tcVNS was found to be well-tolerated. The results of this pilot study suggest that EEG and ECG can detect changes in brain activity and HRV associated with tcVNS in healthy dogs. Larger randomized controlled studies are required to confirm the results of this study and to assess tcVNS potential therapeutic value.
Collapse
Affiliation(s)
- Gibrann Castillo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Luis Gaitero
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Fiona James
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- *Correspondence: Fiona James
| |
Collapse
|
9
|
Ahmed U, Chang YC, Zafeiropoulos S, Nassrallah Z, Miller L, Zanos S. Strategies for precision vagus neuromodulation. Bioelectron Med 2022; 8:9. [PMID: 35637543 PMCID: PMC9150383 DOI: 10.1186/s42234-022-00091-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
The vagus nerve is involved in the autonomic regulation of physiological homeostasis, through vast innervation of cervical, thoracic and abdominal visceral organs. Stimulation of the vagus with bioelectronic devices represents a therapeutic opportunity for several disorders implicating the autonomic nervous system and affecting different organs. During clinical translation, vagus stimulation therapies may benefit from a precision medicine approach, in which stimulation accommodates individual variability due to nerve anatomy, nerve-electrode interface or disease state and aims at eliciting therapeutic effects in targeted organs, while minimally affecting non-targeted organs. In this review, we discuss the anatomical and physiological basis for precision neuromodulation of the vagus at the level of nerve fibers, fascicles, branches and innervated organs. We then discuss different strategies for precision vagus neuromodulation, including fascicle- or fiber-selective cervical vagus nerve stimulation, stimulation of vagal branches near the end-organs, and ultrasound stimulation of vagus terminals at the end-organs themselves. Finally, we summarize targets for vagus neuromodulation in neurological, cardiovascular and gastrointestinal disorders and suggest potential precision neuromodulation strategies that could form the basis for effective and safe therapies.
Collapse
Affiliation(s)
- Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stefanos Zafeiropoulos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Larry Miller
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA.
| |
Collapse
|
10
|
Defining and overcoming the therapeutic obstacles in canine refractory status epilepticus. Vet J 2022; 283-284:105828. [DOI: 10.1016/j.tvjl.2022.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
|
11
|
Hirashima J, Saito M, Igarashi H, Takagi S, Hasegawa D. Case Report: 1-Year Follow-Up of Vagus Nerve Stimulation in a Dog With Drug-Resistant Epilepsy. Front Vet Sci 2021; 8:708407. [PMID: 34355037 PMCID: PMC8330973 DOI: 10.3389/fvets.2021.708407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
A vagus nerve stimulation (VNS) system was surgically implanted to treat drug-resistant epilepsy in a 5-year-old male Shetland Sheepdog. At regular visits during a 1-year follow-up, treatment efficacy and adverse effects were assessed, and programmable stimulation parameters were adjusted to optimize stimulation intensity while avoiding adverse effects. The frequency of generalized tonic–clonic seizures was reduced by 87% after the initiation of VNS. The owner reported that the dog regained his personality, and the quality of life of both the dog and owner improved. The only adverse effect of VNS was a cough that was controlled by adjusting stimulation parameters. There were no surgical complications or other issues with the VNS device. This is the first long-term evaluation of VNS therapy in a dog, and the results obtained suggest that gradual adjustments of VNS parameters facilitate optimum VNS dosing.
Collapse
Affiliation(s)
- Junya Hirashima
- Laboratory of Small Animal Surgery (Neurology), School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Miyoko Saito
- Laboratory of Small Animal Surgery (Neurology), School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Satoshi Takagi
- Laboratory of Small Animal Surgery (Soft Tissue Surgery and Surgical Oncology), School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Daisuke Hasegawa
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Musashino, Japan.,The Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|