1
|
Schols R, Henrard A, Brecko J, Mudavanhu A, Goossens E, Steffanie N, Clegg S, Vanhove MPM, Huyse T. Innovating stomach fluke identification: An integrative approach combining Micro-CT imaging and molecular tools. Int J Parasitol 2025:S0020-7519(25)00093-1. [PMID: 40409527 DOI: 10.1016/j.ijpara.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
The rapid loss of biodiversity driven by anthropogenic pressures highlights the urgent need for improved species identification methods. Parasites, vital ecosystem regulators, are being lost at disproportionate rates, with amphistomes-a broadly distributed group of trematode parasites, infecting all major vertebrate groups-facing significant challenges. Many amphistome species remain undescribed, and reference sequences for known species are scarce, partly due to the reliance on labour-intensive identification methods, such as Scanning Electron Microscopy (SEM) and median sagittal sections. While sagittal sectioning is particularly informative for diagnostic traits, it is destructive, requires toxic chemicals, and demands specialized personnel. In this study, we evaluated micro-computed tomography (micro-CT) imaging as a non-destructive alternative for identifying three amphistome species, Gigantocotyle gigantocotyle (Brandes in Otto, 1896); Carmyerius aff. chabaudi van Strydonck, 1970; and Carmyerius aff. endopapillatus Dollfus, 1962, isolated from the common hippopotamus, Hippopotamus amphibius Linnaeus, 1758. By comparing micro-CT imaging with traditional sectioning, SEM and incorporating molecular barcoding, we reveal the need for a taxonomic revision of Carmyerius, focussed on identifying new diagnostic characters, to better reflect species boundaries. Moreover, the integrated taxonomic effort represented in this work uncovered evidence that C. aff. chabaudi is a new species record from the common hippopotamus. Additionally, we provide high-resolution images of the original type specimens of Carmyerius cruciformis (Leiper, 1910) and G. gigantocotyle and designate new lectotypes and paralectotypes. Our findings demonstrate that micro-CT imaging is a powerful, non-invasive tool for amphistome identification, facilitating access to fragile natural history collections and advancing integrative taxonomy.
Collapse
Affiliation(s)
- Ruben Schols
- Laboratory of Aquatic Biology, Microbiome EcoEvo unit, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium; Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| | - Arnaud Henrard
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Jonathan Brecko
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium.
| | - Aspire Mudavanhu
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium; Department of Biological Sciences, Bindura University of Science Education, 741 Chimurenga Road, 2634 Bindura, Zimbabwe.
| | - Emilie Goossens
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Natascha Steffanie
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Sarah Clegg
- Malilangwe Wildlife Reserve, Private Bag 7085, Chiredzi, Zimbabwe.
| | - Maarten P M Vanhove
- Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| |
Collapse
|
2
|
Outa JO, Avenant-Oldewage A. Echinostomatids from South African freshwater limpets: phylogenetic analyses and diagnostic morphological features for cercariae of Petasiger. J Helminthol 2025; 98:e91. [PMID: 39757578 DOI: 10.1017/s0022149x24000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Species of the family Echinostomatidae use diverse gastropod taxa as first intermediate hosts. However, identification of echinostomatid larvae often proves difficult because of incomplete information on their life cycles and lack of molecular data that can link larvae to the corresponding known adults. Here, echinostomatids that were isolated from freshwater limpets in South Africa were described using light and scanning electron microscopy, and ribosomal (28S, ITS, and 18S) and mitochondrial (cox1) DNA sequences. The analyses revealed three species: Petasiger radiatus, Petasiger sp., and Echinostomatidae gen. sp. Considering the close morphological resemblance between cercariae of Petasiger spp., the current species were compared with data from literature. The results showed that cercarial size is generally unsuitable for species discrimination. The numbers of flame cells and refractile granules in the excretory system, and penetration gland cell patterns, may indicate, but do not prove species identity. Although papillary patterns were distinct between species, papillae were clearly discernible only using scanning electron microscopy and are known for only a few species. Phylogenetic reconstruction indicated that 28S rDNA sequences of Petasiger on GenBank are for P. exaeretus, P. phalacrocoracis, P. radiatus, and six unnamed species. Furthermore, the results revealed that multiple ITS rDNA and cox1 sequences labelled as Stephanoprora amurensis and P. phalacrocoracis on GenBank, are from isolates whose identities are questionable. Echinostomatidae gen. sp. could not be assigned to any currently known genus. Expansion of the genetic database of the family Echinostomatidae is necessary for the delineation of putative species and elucidation of intergeneric relationships.
Collapse
Affiliation(s)
- James Omondi Outa
- University of Johannesburg, Department of Zoology, Auckland Park, 2006, Johannesburg, South Africa
| | | |
Collapse
|
3
|
Okon EM, Oyesiji AA, Okeleye ED, Kanonuhwa M, Khalifa NE, Eissa ESH, Mathew RT, Eissa MEH, Alqahtani MA, Abdelnour SA. The Escalating threat of climate change-driven diseases in fish: Evidence from a global perspective - A literature review. ENVIRONMENTAL RESEARCH 2024; 263:120184. [PMID: 39426450 DOI: 10.1016/j.envres.2024.120184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Climate change has brought significant alterations to the aquatic environment, leading to the rapid spread of infectious fish diseases with increasing water temperatures. It is crucial to understand how aquatic pathogens will impact fish in the context of climate change. This study aimed to assess the effects of climate change on fish diseases globally. Data from 104 papers published between 2003 and 2022 were analyzed to identify recent trends in the field. The majority of the studies (54%) focused on parasites, particularly proliferative kidney disease, while 22% examined bacteria. The United States accounted for 19% of the studies, followed by Canada at 14%, covering a wide range of fish species. More research was published on farmed fish (54%) than wild fish (30%), with a higher emphasis on freshwater species (62%) compared to marine species (34%). Most published studies (64%) focused on the local environment rather than the farm level (7%). The findings highlight temperature as a significant threat to global aquaculture and fisheries, impacting the progression of fish diseases. These impacts could be exacerbated by factors such as pH, salinity, and ocean acidification, posing challenges to fish health. Therefore, there is a pressing need for enhanced research and management strategies to address these issues effectively in the future.
Collapse
Affiliation(s)
- Ekemini Moses Okon
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, Spain
| | - Adeola Ayotope Oyesiji
- Faculty of Sciences, Ghent University, Ghent, Belgium; Department of Biological Sciences, Fisheries Ecology and Aquaculture, Universitetet I Bergen, Norway
| | - Ezekiel Damilola Okeleye
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Mercy Kanonuhwa
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Aquaculture and Fisheries Group, Wageningen University, Netherlands
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Fuka, Matrouh, 51744, Egypt
| | - El-Sayed Hemdan Eissa
- Fish Research Centre, Faculty of Agricultural Environmental Sciences, Arish University, Egypt.
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Ahsa, 31982, Saudi Arabia
| | - Moaheda E H Eissa
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Mohammed A Alqahtani
- Department of Biology, College of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Mudavanhu A, Schols R, Goossens E, Nhiwatiwa T, Manyangadze T, Brendonck L, Huyse T. One Health monitoring reveals invasive freshwater snail species, new records, and undescribed parasite diversity in Zimbabwe. Parasit Vectors 2024; 17:234. [PMID: 38773521 PMCID: PMC11110352 DOI: 10.1186/s13071-024-06307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.
Collapse
Affiliation(s)
- Aspire Mudavanhu
- Department of Biological Sciences, Bindura University of Science Education, Bindura, Zimbabwe.
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium
| | - Emilie Goossens
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Tamuka Nhiwatiwa
- Department of Fisheries and Ocean Sciences, School of Agriculture and Fisheries, University of Namibia, Henties Bay, Namibia
| | - Tawanda Manyangadze
- Department of Geosciences, School of Geosciences, Disaster and Development, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
- Discipline of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Luc Brendonck
- Laboratory of Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
5
|
Outa JO, Bhika P, Avenant-Oldewage A. Gastropod invasions in anthropogenically impacted impoundments in South Africa: Tracing their origins and exploring field evidence of parasite spillback and amplification. Int J Parasitol 2024; 54:279-301. [PMID: 38452963 DOI: 10.1016/j.ijpara.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Invasive snails are associated with ecological problems in freshwater bodies worldwide. However, their impact on the transmission of digenean infections remain underreported. In the present study, 1708 specimens representing four snail species were sampled from four impoundments in the Limpopo River system in South Africa. Gyraulus chinensis (Planorbidae), Physella acuta (Physidae) and Pseudosuccinea columella (Lymnaeidae), which are invasive, were found in all the sampling sites. In contrast, the native lymnaeid Radix natalensis occurred at only one study site. Digeneans were observed only from R. natalensis (prevalence = 49%) and Ps. columella (prevalence = 23%). Morphological and genetic analyses revealed four digeneans: Fasciola nyanzae, Orientocreadium sp., Petasiger sp. and Patagifer vioscai. Pseudosuccinea columella was infected by the four digeneans while R. natalensis harboured only Orientocreadium sp. and Petasiger sp. Partial sequences of Orientocreadium sp. from the current study differed from congeners whose DNA data are available on GenBank, by p-distances of at least 1.84 and 2.2% for 28S and the internal transcribed spacer (ITS) rDNA, respectively. Phylogenetic analyses demonstrated that the present species is sister to Orientocreadium batrachoides. Genetic and phylogenetic data based on 28S and ITS rDNA suggested that Petasiger sp. from the present study and isolates of three unidentified Petasiger spp. from Kenya, Hungary and Australia, were representatives of the same species. This is the first known report of Orientocreadium, Petasiger and Patagifer from Ps. columella. The occurrence of F. nyanzae in Ps. columella indicates spillback from R. natalensis. These findings echo the concerns raised in previous studies about the potential role of Ps. columella in the amplification of digenean diseases in its introduced range. Phylogenetic analyses of partial sequences of the cytochrome c oxidase subunit 1 mitochondrial gene (cox1) showed multiple lineages of Ps. columella in North and South America. Pseudosuccinea columella specimens from the present study belong to an invasive genotype that has spread globally and has been reported from Zimbabwe, Egypt, Portugal, Australia, Argentina, Colombia and New Mexico (USA). Physella acuta from the current study had a stronger genetic relationship with isolates from Canada and Iceland, than with isolates from other parts of Africa, suggesting several invasion routes into Africa. This is the first known DNA characterisation of G. chinensis from Africa. Phylogenetic reconstruction indicated multiple exit events of G. chinensis from Asia into Europe and Africa. South African isolates clustered in a recent branch containing isolates from the Czech Republic and Hong Kong, China. Considering the presence of invasive snails in all the sampling sites in the present study, it is necessary to investigate the factors that enhance their establishment and to monitor their effects on the native snail populations.
Collapse
Affiliation(s)
- James Omondi Outa
- University of Johannesburg, Department of Zoology, Auckland Park B-2006, Johannesburg, South Africa. https://twitter.com/OutaJames
| | - Parthi Bhika
- University of Johannesburg, Department of Zoology, Auckland Park B-2006, Johannesburg, South Africa
| | | |
Collapse
|
6
|
Muzarabani KC, Carolus H, Schols R, Hammoud C, Barson M, Huyse T. An update on snail and trematode communities in the Sanyati Basin of Lake Kariba: New snail and trematode species but no human schistosomes. Parasitol Int 2024; 99:102830. [PMID: 38016629 DOI: 10.1016/j.parint.2023.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The construction of Lake Kariba brought about a rise in the incidence of schistosomiasis in its surrounding towns of Kariba (Zimbabwe) and Siavonga (Zambia). After extensive control programs in Kariba, schistosomiasis prevalence dropped significantly. The objective of this study was to revisit the same localities sampled by Chimbari et al. (2003), and provide an update on the snail community and prevalence of trematodes in the Northern shore of Lake Kariba while focusing on planorbid species. METHODS Monthly sampling of snails at 16 sites along the Northern shoreline of Lake Kariba, near Kariba town, was undertaken for one year. Minimum one specimen per morphotype was identified using molecular barcoding (sequencing a fragment of cytochrome c oxidase I subunit (COI)). The infection status of snails was assessed by Rapid Diagnostic PCRs (RD-PCR), and trematode infections were genotyped by sequencing COI and 18S rDNA markers. RESULTS We collected and identified seven snail species: Bulinus truncatus, Bulinus forskalii, Gyraulus sp., Physella acuta, Bellamya sp., Radix affinis plicatula and Pseudosuccinea columella. Physella acuta was the most abundant snail species (comprising 56.95% of the total snail count) and present at all sites. The B. truncatus population was found to be infected with the stomach fluke Carmyerius cruciformis, a Petasiger sp. and a trematode species belonging to the family Notocotylidae. No Schistosoma sp. infections were detected in our collected snail specimens. CONCLUSIONS We report B. truncatus as an intermediate snail host for Carmyerius cruciformis, and the presence of three non-schistosome trematode species that have not been reported in Lake Kariba before. Furthermore, we detect a possible shift in the snail community when compared to the report by Chimbari et al. (2003): this is the first record of Gyraulus sp. in Lake Kariba, and we did not observe the previously reported B. pfeifferi, B. globosus and Radix natalensis. Although this shift in snail communities might have contributed to the absence of Schistosoma spp. detection in this study, further monitoring of final and intermediate hosts across the Kariba basin is essential to prove a decrease of schistosomiasis in the area.
Collapse
Affiliation(s)
- Kudzai C Muzarabani
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven, Belgium
| | - Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium; Limnology Research Unit, Ghent University, Ghent, Belgium
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe; Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
7
|
Schols R, Smitz N, Vanderheyden A, Huyse T. Expanding the swimmer's itch pool of the Benelux: a first record of the neurotropic Trichobilharzia regenti and potential link to human infection. Parasit Vectors 2024; 17:126. [PMID: 38481352 PMCID: PMC10938770 DOI: 10.1186/s13071-024-06218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Swimmer's itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous for their role in swimmer's itch cases. These parasites infect waterfowl as a final host, but incidental infections by cercariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis. METHODS Following a reported case of swimmer's itch in Kampenhout in 2022 (Belgium), the transmission site consisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey. RESULTS Six snail species were collected, including the widespread Ampullaceana balthica, a well-known intermediate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identification, respectively. CONCLUSIONS The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium.
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, Kortrijk, Belgium.
| | - Nathalie Smitz
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium
| | - Ann Vanderheyden
- BopCo, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Tine Huyse
- Department of Biology & BopCo, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
8
|
Mas-Coma S, Valero MA, Bargues MD. One Health for fascioliasis control in human endemic areas. Trends Parasitol 2023; 39:650-667. [PMID: 37385922 DOI: 10.1016/j.pt.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Fasciola hepatica and F. gigantica are liver flukes causing fascioliasis, a worldwide zoonotic, complex disease. Human infection/reinfection occurs in endemic areas where preventive chemotherapy is applied, because of fasciolid transmission ensured by livestock and lymnaeid snail vectors. A One Health control action is the best complement to decrease infection risk. The multidisciplinary framework needs to focus on freshwater transmission foci and their environment, lymnaeids, mammal reservoirs, and inhabitant infection, ethnography and housing. Local epidemiological and transmission knowledge furnished by previous field and experimental research offers the baseline for control design. A One Health intervention should be adapted to the endemic area characteristics. Long-term control sustainability may be achieved by prioritizing measures according to impact depending on available funds.
Collapse
Affiliation(s)
- Santiago Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - M Adela Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - M Dolores Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, - Valencia, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| |
Collapse
|
9
|
Hammoud C, Kayenbergh A, Tumusiime J, Verschuren D, Albrecht C, Huyse T, Van Bocxlaer B. Trematode infection affects shell shape and size in Bulinus tropicus. Int J Parasitol Parasites Wildl 2022; 18:300-311. [PMID: 35957748 PMCID: PMC9357703 DOI: 10.1016/j.ijppaw.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/02/2022]
Abstract
Trematodes can increase intraspecific variation in the phenotype of their intermediate snail host. However, the extent of such phenotypic changes remains unclear. We investigated the influence of trematode infection on the shell morphology of Bulinus tropicus, a common host of medically important trematodes. We focused on a snail population from crater lake Kasenda (Uganda). We sampled a single homogeneous littoral habitat to minimize the influence of environmental variation on shell phenotype, and barcoded snails to document snail genotypic variation. Among the 257 adult snails analysed, 99 tested positive for trematode infection using rapid-diagnostic PCRs. Subsequently we used high-throughput amplicon sequencing to identify the trematode (co-)infections. For 86 out of the 99 positive samples trematode species delineation could discriminate among combinations of (co-)infection by 11 trematode species. To avoid confounding effects, we focused on four prevalent trematode species. We performed landmark-based geometric morphometrics to characterize shell phenotype and used regressions to examine whether shell size and shape were affected by trematode infection and the developmental stage of infection (as inferred from read counts). Snails infected by Petasiger sp. 5, Echinoparyphium sp. or Austrodiplostomum sp. 2 had larger shells than uninfected snails or than those infected by Plagiorchiida sp. Moreover, the shell shape of snails infected solely by Petasiger sp. 5 differed significantly from that of uninfected snails and snails infected with other trematodes, except from Austrodiplostomum sp. 2. Shape changes included a more protuberant apex, an inward-folded outer apertural lip and a more adapically positioned umbilicus. Size differences were more pronounced in snails with ‘late’ infections (>25 days) compared to earlier-stage infections. No phenotypic differences were found between snails infected by a single trematode species and those harbouring co-infections. Further work is required to assess the complex causal links between trematode infections and shell morphological alterations of snail hosts. Trematode infections are linked to Bulinus tropicus shell shape and size variations. Variations in shell phenotype are trematode species-dependant. Trematode infections were analysed using diagnostic PCRs and amplicon sequencing. Snail shell morphology was analysed using landmark-based geometric morphometrics.
Collapse
|
10
|
Papaiakovou M, Littlewood DTJ, Doyle SR, Gasser RB, Cantacessi C. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics. Parasit Vectors 2022; 15:118. [PMID: 35365192 PMCID: PMC8973539 DOI: 10.1186/s13071-022-05225-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) helminth infections cause significant morbidity in both humans and animals worldwide. Specific and sensitive diagnosis is central to the surveillance of such infections and to determine the effectiveness of treatment strategies used to control them. In this article, we: (i) assess the strengths and limitations of existing methods applied to the diagnosis of GI helminth infections of humans and livestock; (ii) examine high-throughput sequencing approaches, such as targeted molecular barcoding and shotgun sequencing, as tools to define the taxonomic composition of helminth infections; and (iii) discuss the current understanding of the interactions between helminths and microbiota in the host gut. Stool-based diagnostics are likely to serve as an important tool well into the future; improved diagnostics of helminths and their environment in the gut may assist the identification of biomarkers with the potential to define the health/disease status of individuals and populations, and to identify existing or emerging anthelmintic resistance.
Collapse
Affiliation(s)
- Marina Papaiakovou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | | | | | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| |
Collapse
|
11
|
Hammoud C, Mulero S, Van Bocxlaer B, Boissier J, Verschuren D, Albrecht C, Huyse T. Simultaneous genotyping of snails and infecting trematode parasites using high-throughput amplicon sequencing. Mol Ecol Resour 2021; 22:567-586. [PMID: 34435445 DOI: 10.1111/1755-0998.13492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023]
Abstract
Several methodological issues currently hamper the study of entire trematode communities within populations of their intermediate snail hosts. Here we develop a new workflow using high-throughput amplicon sequencing to simultaneously genotype snail hosts and their infecting trematode parasites. We designed primers to amplify four snail and five trematode markers in a single multiplex PCR. While also applicable to other genera, we focused on medically and economically important snail genera within the superorder Hygrophila and targeted a broad taxonomic range of parasites within the class Trematoda. We tested the workflow using 417 Biomphalaria glabrata specimens experimentally infected with Schistosoma rodhaini, two strains of Schistosoma mansoni and combinations thereof. We evaluated the reliability of infection diagnostics, the robustness of the workflow, its specificity related to host and parasite identification, and the sensitivity to detect co-infections, immature infections and changes of parasite biomass during the infection process. Finally, we investigated its applicability in wild-caught snails of other genera naturally infected with a diverse range of trematodes. After stringent quality control the workflow allows the identification of snails to species level, and of trematodes to taxonomic levels ranging from family to strain. It is sensitive to detect immature infections and changes in parasite biomass described in previous experimental studies. Co-infections were successfully identified, opening the possibility to examine parasite-parasite interactions such as interspecific competition. Together, these results demonstrate that our workflow provides a powerful tool to analyse the processes shaping trematode communities within natural snail populations.
Collapse
Affiliation(s)
- Cyril Hammoud
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Bert Van Bocxlaer
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Univ. Lille, UMR 8198 Evo-Eco-Paleo, CNRS, Lille, France
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Dirk Verschuren
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium
| | - Christian Albrecht
- Systematics & Biodiversity Lab, Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Schols R, Carolus H, Hammoud C, Muzarabani KC, Barson M, Huyse T. Invasive snails, parasite spillback, and potential parasite spillover drive parasitic diseases of Hippopotamus amphibius in artificial lakes of Zimbabwe. BMC Biol 2021; 19:160. [PMID: 34412627 PMCID: PMC8377832 DOI: 10.1186/s12915-021-01093-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Humans impose a significant pressure on large herbivore populations, such as hippopotami, through hunting, poaching, and habitat destruction. Anthropogenic pressures can also occur indirectly, such as artificial lake creation and the subsequent introduction of invasive species that alter the ecosystem. These events can lead to drastic changes in parasite diversity and transmission, but generally receive little scientific attention. Results In order to document and identify trematode parasites of the common hippopotamus (Hippopotamus amphibius) in artificial water systems of Zimbabwe, we applied an integrative taxonomic approach, combining molecular diagnostics and morphometrics on archived and new samples. In doing so, we provide DNA reference sequences of the hippopotamus liver fluke Fasciola nyanzae, enabling us to construct the first complete Fasciola phylogeny. We describe parasite spillback of F. nyanzae by the invasive freshwater snail Pseudosuccinea columella, as a consequence of a cascade of biological invasions in Lake Kariba, one of the biggest artificial lakes in the world. Additionally, we report an unknown stomach fluke of the hippopotamus transmitted by the non-endemic snail Radix aff. plicatula, an Asian snail species that has not been found in Africa before, and the stomach fluke Carmyerius cruciformis transmitted by the native snail Bulinus truncatus. Finally, Biomphalaria pfeifferi and two Bulinus species were found as new snail hosts for the poorly documented hippopotamus blood fluke Schistosoma edwardiense. Conclusions Our findings indicate that artificial lakes are breeding grounds for endemic and non-endemic snails that transmit trematode parasites of the common hippopotamus. This has important implications, as existing research links trematode parasite infections combined with other stressors to declining wild herbivore populations. Therefore, we argue that monitoring the anthropogenic impact on parasite transmission should become an integral part of wildlife conservation efforts. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01093-2.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium. .,Laboratory of Aquatic Biology, KU Leuven Kulak, Kortrijk, Belgium.
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, KU Leuven-VIB Center for Microbiology, Leuven, Belgium
| | - Cyril Hammoud
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Limnology Research Unit, Ghent University, Ghent, Belgium
| | | | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe.,Department of Biological Sciences, University of Botswana, Gaborone, Botswana.,Lake Kariba Research Station, University of Zimbabwe, Kariba, Zimbabwe
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|