1
|
Awasthi TR, Morshed A, Williams T, Swain DL. Simulation Approaches Used for Management and Decision Making in the Beef Production Sector: A Systematic Review. Animals (Basel) 2024; 14:1632. [PMID: 38891679 PMCID: PMC11171018 DOI: 10.3390/ani14111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Simulation models are used in various areas of agriculture to better understand the system and assist in decision making. In the beef production sector, a variety of simulation research focusing on various dimensions of the system is available. However, an overview of the available research is lacking. Therefore, a systematic review was conducted to provide an overview of simulation studies of beef production and create an understanding of the simulation approaches used. Scopus, Web of Science, and ProQuest Central research databases were used to search the relevant articles, with the last search conducted in June 2023. Studies that developed or used simulation strategies and used beef cattle as a primary focus of the study were included. The 105 studies included in this review were examined thoroughly to record the authors, year of publication, country of study, type of study, focus area of the study, simulated scenarios, validation methods, and software programs used. There has been growing research interest in simulating beef production systems worldwide, with most studies conducted in North America and Europe. Among these studies, the majority (84.76%, n = 89) are biophysical or bioeconomic study types and use deterministic approaches (n = 42). Additionally, most studies have a whole-farm scope (38.09%, n = 40) and focus on productivity (51.43%, n = 54). Since only less than half of the studies mentioned the validation techniques and software programs used, there is a need to improve the availability of this information to ensure that the models are adopted effectively in decision making.
Collapse
Affiliation(s)
- Tek Raj Awasthi
- School of Health Medical and Applied Sciences, CQUniversity, Rockhampton North, QLD 4701, Australia; (T.W.); (D.L.S.)
| | - Ahsan Morshed
- School of Engineering and Technology, CQUniversity, Melbourne, VIC 3000, Australia;
| | - Thomas Williams
- School of Health Medical and Applied Sciences, CQUniversity, Rockhampton North, QLD 4701, Australia; (T.W.); (D.L.S.)
| | - Dave L. Swain
- School of Health Medical and Applied Sciences, CQUniversity, Rockhampton North, QLD 4701, Australia; (T.W.); (D.L.S.)
- TerraCipher, Alton Downs, QLD 4702, Australia
| |
Collapse
|
2
|
González-Gordon L, Porphyre T, Muwonge A, Nantima N, Ademun R, Ochwo S, Mwiine NF, Boden L, Muhanguzi D, Bronsvoort BMDC. Identifying target areas for risk-based surveillance and control of transboundary animal diseases: a seasonal analysis of slaughter and live-trade cattle movements in Uganda. Sci Rep 2023; 13:18619. [PMID: 37903814 PMCID: PMC10616094 DOI: 10.1038/s41598-023-44518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
Animal movements are a major driver for the spread of Transboundary Animal Diseases (TADs). These movements link populations that would otherwise be isolated and hence create opportunities for susceptible and infected individuals to meet. We used social network analysis to describe the seasonal network structure of cattle movements in Uganda and unravel critical network features that identify districts or sub-regions for targeted risk-based surveillance and intervention. We constructed weighted, directed networks based on 2019 between-district cattle movements using official livestock mobility data; the purpose of the movement ('slaughter' vs. 'live trade') was used to subset the network and capture the risks more reliably. Our results show that cattle trade can result in local and long-distance disease spread in Uganda. Seasonal variability appears to impact the structure of the network, with high heterogeneity of node and edge activity identified throughout the seasons. These observations mean that the structure of the live trade network can be exploited to target influential district hubs within the cattle corridor and peripheral areas in the south and west, which would result in rapid network fragmentation, reducing the contact structure-related trade risks. Similar exploitable features were observed for the slaughter network, where cattle traffic serves mainly slaughter hubs close to urban centres along the cattle corridor. Critically, analyses that target the complex livestock supply value chain offer a unique framework for understanding and quantifying risks for TADs such as Foot-and-Mouth disease in a land-locked country like Uganda. These findings can be used to inform the development of risk-based surveillance strategies and decision making on resource allocation. For instance, vaccine deployment, biosecurity enforcement and capacity building for stakeholders at the local community and across animal health services with the potential to limit the socio-economic impact of outbreaks, or indeed reduce their frequency.
Collapse
Affiliation(s)
- Lina González-Gordon
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
- Global Academy of Agriculture and Food Systems, Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Universite Claude Bernard Lyon 1, CNRS, VetAgro Sup, Marcy l'Étoile, France
| | - Adrian Muwonge
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The Digital One Health Laboratory, The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Noelina Nantima
- Department of Animal Health, Ministry of Agriculture Animal Industry and Fisheries, Entebbe, Uganda
| | - Rose Ademun
- Department of Animal Health, Ministry of Agriculture Animal Industry and Fisheries, Entebbe, Uganda
| | - Sylvester Ochwo
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Norbert Frank Mwiine
- Department of Biomolecular Resources and Biolaboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Lisa Boden
- Global Academy of Agriculture and Food Systems, Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Dennis Muhanguzi
- Department of Biomolecular Resources and Biolaboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Barend Mark de C Bronsvoort
- The Epidemiology, Economics and Risk Assessment (EERA) Group, The Roslin Institute at The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
3
|
Kasozi KI, MacLeod ET, Ntulume I, Welburn SC. An Update on African Trypanocide Pharmaceutics and Resistance. Front Vet Sci 2022; 9:828111. [PMID: 35356785 PMCID: PMC8959112 DOI: 10.3389/fvets.2022.828111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
African trypanosomiasis is associated with Trypanosoma evansi, T. vivax, T. congolense, and T. brucei pathogens in African animal trypanosomiasis (AAT) while T. b gambiense and T. b rhodesiense are responsible for chronic and acute human African trypanosomiasis (HAT), respectively. Suramin sodium suppresses ATP generation during the glycolytic pathway and is ineffective against T. vivax and T. congolense infections. Resistance to suramin is associated with pathogen altered transport proteins. Melarsoprol binds irreversibly with pyruvate kinase protein sulfhydryl groups and neutralizes enzymes which interrupts the trypanosome ATP generation. Melarsoprol resistance is associated with the adenine-adenosine transporter, P2, due to point mutations within this transporter. Eflornithine is used in combination with nifurtimox. Resistance to eflornithine is caused by the deletion or mutation of TbAAT6 gene which encodes the transmembrane amino acid transporter that delivers eflornithine into the cell, thus loss of transporter protein results in eflornithine resistance. Nifurtimox alone is regarded as a poor trypanocide, however, it is effective in melarsoprol-resistant gHAT patients. Resistance is associated with loss of a single copy of the genes encoding for nitroreductase enzymes. Fexinidazole is recommended for first-stage and non-severe second-stage illnesses in gHAT and resistance is associated with trypanosome bacterial nitroreductases which reduce fexinidazole. In AAT, quinapyramine sulfate interferes with DNA synthesis and suppression of cytoplasmic ribosomal activity in the mitochondria. Quinapyramine sulfate resistance is due to variations in the potential of the parasite's mitochondrial membrane. Pentamidines create cross-links between two adenines at 4–5 pairs apart in adenine-thymine-rich portions of Trypanosoma DNA. It also suppresses type II topoisomerase in the mitochondria of Trypanosoma parasites. Pentamidine resistance is due to loss of mitochondria transport proteins P2 and HAPT1. Diamidines are most effective against Trypanosome brucei group and act via the P2/TbAT1 transporters. Diminazene aceturate resistance is due to mutations that alter the activity of P2, TeDR40 (T. b. evansi). Isometamidium chloride is primarily employed in the early stages of trypanosomiasis and resistance is associated with diminazene resistance. Phenanthridine (homidium bromide, also known as ethidium bromide) acts by a breakdown of the kinetoplast network and homidium resistance is comparable to isometamidium. In humans, the development of resistance and adverse side effects against monotherapies has led to the adoption of nifurtimox-eflornithine combination therapy. Current efforts to develop new prodrug combinations of nifurtimox and eflornithine and nitroimidazole fexinidazole as well as benzoxaborole SCYX-7158 (AN5568) for HAT are in progress while little comparable progress has been done for the development of novel therapies to address trypanocide resistance in AAT.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
- *Correspondence: Keneth Iceland Kasozi ;
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ibrahim Ntulume
- School of Biosecurity Biotechnical and Laboratory Sciences, College of Medicine and Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Hangzhou, China
- Susan Christina Welburn
| |
Collapse
|