1
|
Bauer BU, Peters M, Herms TL, Runge M, Wohlsein P, Jensen TK, Ganter M. Detection of Coxiella burnetii in the mammary gland of a dairy goat. Vet Res Commun 2024; 48:1341-1352. [PMID: 38236458 PMCID: PMC11147866 DOI: 10.1007/s11259-023-10233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 01/19/2024]
Abstract
The zoonotic bacterium Coxiella (C.) burnetii can be excreted by infected goats through birth products and milk. The detection of C. burnetii DNA in the mammary gland tissue of infected dairy goats and intermittent milk shedders has been reported, but confirmation of C. burnetii bacteria in the udder remained pending. The pathogen caused abortions in a 152-head dairy goat herd, resulting in the vaccination against C. burnetii of the entire herd with annual boosters. To monitor the C. burnetii shedding at herd level, monthly bulk tank milk (BTM) samples were analyzed using PCR (IS1111). Despite vaccination, C. burnetii DNA was detected in BTM samples within the first 16 months of the study. Therefore, individual milk samples were tested on four different occasions several months apart to identify potential intermittent milk shedders. Only one goat (#67455) tested positive three times. This goat was necropsied to investigate the presence of C. burnetii in the udder and other organs. PCR detected C. burnetii DNA solely in both mammary glands and the left teat cistern. Immunohistological examination identified C. burnetii antigen in mammary gland tissue, confirmed by the detection of C. burnetii bacteria in the mammary epithelial cells using fluorescence in situ hybridization. The removal of goat #67455 led to negative BTM samples until the end of the study. The findings demonstrate the occurrence of C. burnetii in the mammary gland of a naturally infected and vaccinated goat. The presence possibly contributed to intermittent milk shedding of goat #67455, and the mammary gland tissue may serve as a replicative niche for C. burnetii.
Collapse
Affiliation(s)
- Benjamin Ulrich Bauer
- University of Veterinary Medicine Hannover, Foundation, Clinic for Swine and Small Ruminants, Bischofsholer Damm 15, Hannover, 30173, Germany.
| | - Martin Peters
- Chemisches und Veterinäruntersuchungsamt Westfalen, Zur Taubeneiche 10-12, Arnsberg, 59821, Germany
| | - T Louise Herms
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, Hannover, 30173, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, Hannover, 30173, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hannover, 30559, Germany
| | - Tim K Jensen
- Center for Diagnostic, Technical University of Denmark, Henrik Dams Allé, Kongens Lyngby, 2800, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg C, 1870, Denmark
| | - Martin Ganter
- University of Veterinary Medicine Hannover, Foundation, Clinic for Swine and Small Ruminants, Bischofsholer Damm 15, Hannover, 30173, Germany
| |
Collapse
|
2
|
Fiorentino MA, Acuña Y, Sosa E, Cantón GJ, Erreguerena I, Malena R, Mendez MA, Morrell EL, García JA. Infectious sporadic bovine abortions: retrospective analysis. Trop Anim Health Prod 2024; 56:63. [PMID: 38291289 DOI: 10.1007/s11250-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Infectious sporadic abortions in cattle are mainly caused by opportunistic bacteria and fungi usually present in environmental or gastrointestinal and reproductive microbiota of healthy animals. A retrospective analysis was carried out to evaluate the main opportunistic microorganisms involved in bovine abortions recorded at INTA Balcarce (Argentina) from 1997 to 2023, accounting for 2.2% of the total diagnosed etiologies of bovine abortion. The opportunistic agents identified as the cause of abortion in 29 fetuses were bacteria (90%) and fungi (10%). Escherichia coli (n = 8), Trueperella pyogenes (n = 5), and Histophilus somni (n = 4) were the bacterial species most often identified as causing infectious abortions, whereas Aspergillus spp. (n = 3) was implicated in all fungal abortions identified. Pure culture of bacteria or fungus was achieved from abomasal content and/or lung essential. Main microscopic findings were bronchopneumonia, myo- and epicarditis, meningitis, and portal hepatitis. Herein, we highlight the importance of detecting potential infectious bacteria in cultures to improve etiological diagnosis of bovine abortions associated with compatible microscopic findings to confirm the etiology.
Collapse
Affiliation(s)
- María A Fiorentino
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina.
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.
| | - Yamila Acuña
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Emiliano Sosa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Ignacio Erreguerena
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Rosana Malena
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - María A Mendez
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Eleonora L Morrell
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Juan A García
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
3
|
Loehrer S, Hagenbuch F, Marti H, Pesch T, Hässig M, Borel N. Longitudinal study of Chlamydia pecorum in a healthy Swiss cattle population. PLoS One 2023; 18:e0292509. [PMID: 38079424 PMCID: PMC10712897 DOI: 10.1371/journal.pone.0292509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Chlamydia pecorum is a globally endemic livestock pathogen but prevalence data from Switzerland has so far been limited. The present longitudinal study aimed to get an insight into the C. pecorum prevalence in Swiss cattle and investigated infection dynamics. The study population consisted of a bovine herd (n = 308) located on a farm in the north-eastern part of Switzerland. The herd comprised dairy cows, beef cattle and calves all sampled up to five times over a one-year period. At each sampling timepoint, rectal and conjunctival swabs were collected resulting in 782 samples per sampled area (total n = 1564). Chlamydiaceae screening was performed initially, followed by C. pecorum-specific real-time qPCR on all samples. For C. pecorum-positive samples, bacterial loads were determined. In this study, C. pecorum was the only chlamydial species found. Animal prevalences were determined to be 5.2-11.4%, 38.1-61.5% and 55-100% in dairy cows, beef cattle and calves, respectively. In all categories, the number of C. pecorum-positive samples was higher in conjunctival (n = 151) compared to rectal samples (n = 65), however, the average rectal load was higher. At a younger age, the chlamydial prevalence and the mean bacterial loads were significantly higher. Of all sampled bovines, only 9.4% (29/308) were high shedders (number of copies per μl >1,000). Calves, which tested positive multiple times, either failed to eliminate the pathogen between sampling timepoints or were reinfected, whereas dairy cows were mostly only positive at one timepoint. In conclusion, C. pecorum was found in healthy Swiss cattle. Our observations suggested that infection takes place at an early age and immunity might develop over time. Although the gastrointestinal tract is supposed to be the main infection site, C. pecorum was not present in rectal samples from dairy cows.
Collapse
Affiliation(s)
- Samuel Loehrer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fabian Hagenbuch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michael Hässig
- Department for Farm Animals, Section for Herd Health, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Jakab S, Bali K, Freytag C, Pataki A, Fehér E, Halas M, Jerzsele Á, Szabó I, Szarka K, Bálint Á, Bányai K. Deep Sequencing of Porcine Reproductive and Respiratory Syndrome Virus ORF7: A Promising Tool for Diagnostics and Epidemiologic Surveillance. Animals (Basel) 2023; 13:3223. [PMID: 37893946 PMCID: PMC10603690 DOI: 10.3390/ani13203223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major concern worldwide. Control of PRRSV is a challenging task due to various factors, including the viral diversity and variability. In this study, we evaluated an amplicon library preparation protocol targeting the ORF7 region of both PRRSV species, Betaarterivirus suid 1 and Betaarterivirus suid 2. We designed tailed primers for a two-step PCR procedure that generates ORF7-specific amplicon libraries suitable for use on Illumina sequencers. We tested the method with serum samples containing common laboratory strains and with pooled serum samples (n = 15) collected from different pig farms during 2019-2021 in Hungary. Testing spiked serum samples showed that the newly designed method is highly sensitive and detects the viral RNA even at low copy numbers (corresponding to approx. Ct 35). The ORF7 sequences were easily assembled even from clinical samples. Two different sequence variants were identified in five samples, and the Porcilis MLV vaccine strain was identified as the minor variant in four samples. An in-depth analysis of the deep sequencing results revealed numerous polymorphic sites along the ORF7 gene in a total of eight samples, and some sites (positions 12, 165, 219, 225, 315, 345, and 351) were found to be common in several clinical specimens. We conclude that amplicon deep sequencing of a highly conserved region of the PRRSV genome could support both laboratory diagnosis and epidemiologic surveillance of the disease.
Collapse
Affiliation(s)
- Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Csongor Freytag
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Anna Pataki
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
| | - Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | | | - Ákos Jerzsele
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| | - István Szabó
- National PRRS Eradication Committee, Keleti Károly u. 24., H-1024 Budapest, Hungary;
| | - Krisztina Szarka
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143 Budapest, Hungary;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| |
Collapse
|
5
|
Aymée L, Di Azevedo MIN, Reis L, Mendes J, de Castro FDFA, Carvalho-Costa FA, de Souza GN, Lilenbaum W. Unconventional Sites for Diagnosis of Leptospirosis in Bovine Anicteric Fetuses. Animals (Basel) 2023; 13:2832. [PMID: 37760232 PMCID: PMC10525537 DOI: 10.3390/ani13182832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bovine leptospirosis is an important reproductive disease and abortion is a major sign, leading to economic impacts. Due to its multifactorial etiology, the proper diagnosis of the cause of the abortion is crucial. Necropsy of the fetuses followed by molecular analysis is recommended for diagnosis, and the investigation mainly occurs in the kidneys and liver. This study aimed to analyze unconventional sites for the presence of leptospiral DNA in bovine anicteric aborted fetuses. METHODS Five fetuses of the same herd were received for necropsy and diagnosis. Conventional lipL32-PCR was performed in the fetuses' kidneys, livers, lungs, hearts, spleens, subcapsular kidney content, abomasal fluid, and in the cavity's hemorrhagic contents. To complete the investigation, the sera of 30 cows of the herd were collected to perform the serologic screening by Microscopic Agglutination Test. In addition, six subfertile non-pregnant cows from the same herd were selected due to their low reproductive performance, and genital samples (uterine fragment and cervicovaginal mucus) and urine were collected for lipL32-PCR. PCR-positive samples were submitted to a nested PCR of the secY gene and intended for sequencing. RESULTS The herd presented seroreactive animals (11/30, 36.6%), all against the Sejroe serogroup, with titers between 200 and 1600. In necropsy, four fetuses showed hemorrhagic and anicteric lesions, while one fetus had no macroscopic lesions. Regarding molecular analysis, all the fetuses were positive in lipL32-PCR and the positive sites were the heart, lungs, subcapsular kidney content, thymus, kidneys, liver, and abomasal fluid. Only one fetus presented positive results in the kidney and liver, while three fetuses were positive in the abomasal fluid. Five of six cows were positive for lipL32-PCR, all being positive only in genital samples. Of the fetuses and the cows, seven sequences were obtained and all were identified as Leptospira interrogans serogroup Sejroe serovar Hardjoprajitno. CONCLUSIONS In order to improve the diagnosis of leptospirosis in cows, it is recommended to perform a comprehensive analysis of the samples, beyond the kidneys and liver. Thus, we highly encourage testing multiple organs by PCR to investigate abortions suspected of bovine leptospirosis, particularly in anicteric fetuses.
Collapse
Affiliation(s)
- Luiza Aymée
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (L.A.)
| | - Maria Isabel Nogueira Di Azevedo
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (L.A.)
| | - Luiza Reis
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (L.A.)
| | - Julia Mendes
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (L.A.)
| | | | - Filipe Anibal Carvalho-Costa
- Laboratory of Epidemiology and Molecular Systematics, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Walter Lilenbaum
- Laboratory of Veterinary Bacteriology, Biomedical Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil; (L.A.)
| |
Collapse
|
6
|
Modise BM, Mpoloka SW, Settypalli TBK, Hyera J, Natale A, Ceglie L, Gcebe N, Marobela-Raborokgwe C, Viljoen GJ, Cattoli G, Lamien CE. A novel multiplex qPCR‑HRM assay for the simultaneous detection of four abortive zoonotic agents in cattle, sheep, and goats. Sci Rep 2023; 13:12282. [PMID: 37507444 PMCID: PMC10382562 DOI: 10.1038/s41598-023-39447-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Abortifacient pathogens induce substantial economic losses in the livestock industry worldwide, and many of these pathogens are zoonotic, impacting human health. As Brucella spp., Coxiella burnetii, Leptospira spp., and Listeria monocytogenes cause abortion, rapid differential molecular diagnostic tests are needed to facilitate early and accurate detection of abortion to establish effective control measures. However, the available molecular methods are laborious, time-consuming, or costly. Therefore, we developed and validated a novel multiplex real-time polymerase chain reaction (qPCR) method based on high-resolution melting (HRM) curve analysis to simultaneously detect and differentiate four zoonotic abortifacient agents in cattle, goats, and sheep. Our HRM assay generated four well-separated melting peaks allowing the differentiation between the four zoonotic abortifacients. Out of 216 DNA samples tested, Brucella spp. was detected in 45 samples, Coxiella burnetii in 57 samples, Leptospira spp. in 12 samples, and Listeria monocytogenes in 19 samples, co-infection with Brucella spp. and Coxiella burnetii in 41 samples, and 42 samples were negative. This assay demonstrated good analytical sensitivity, specificity, and reproducibility. This is a valuable rapid, cost-saving, and reliable diagnostic tool for detecting individual and co-infections for zoonotic abortifacient agents in ruminants.
Collapse
Affiliation(s)
- Boitumelo M Modise
- Botswana National Veterinary Laboratory, Private Bag 0035, Gaborone, Botswana.
- Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana.
| | - Sununguko W Mpoloka
- Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, 1400, Vienna, Austria
| | - Joseph Hyera
- Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell'Università, 10, 35020, Legnaro, Italy
| | - Nomakorinte Gcebe
- Agricultural Research Council-Bacteriology and Zoonotic Diseases Diagnostic Laboratory, Onderstepoort Veterinary Research, Pretoria, South Africa
| | | | - Gerrit J Viljoen
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, 1400, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, 1400, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, 1400, Vienna, Austria
| |
Collapse
|
7
|
Loy JD, Clawson ML, Adkins PRF, Middleton JR. Current and Emerging Diagnostic Approaches to Bacterial Diseases of Ruminants. Vet Clin North Am Food Anim Pract 2023; 39:93-114. [PMID: 36732002 DOI: 10.1016/j.cvfa.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The diagnostic approaches and methods to detect bacterial pathogens in ruminants are discussed, with a focus on cattle. Conventional diagnostic methods using culture, isolation, and characterization are being replaced or supplemented with new methods. These include molecular diagnostics such as real-time polymerase chain reaction and whole-genome sequencing. In addition, methods such as matrix-assisted laser desorption ionization-time-of-flight mass spectrometry enable rapid identification and enhanced pathogen characterization. These emerging diagnostic tools can greatly enhance the ability to detect and characterize pathogens, but performance and interpretation vary greatly across sample and pathogen types, disease syndromes, assay performance, and other factors.
Collapse
Affiliation(s)
- John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Michael L Clawson
- USDA, Agriculture Research Service US Meat Animal Research Center, Clay Center, NE, USA
| | - Pamela R F Adkins
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
8
|
Coxiella burnetii and Co-Infections with Other Major Pathogens Causing Abortion in Small Ruminant Flocks in the Iberian Peninsula. Animals (Basel) 2022; 12:ani12243454. [PMID: 36552374 PMCID: PMC9774532 DOI: 10.3390/ani12243454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterium causing human Q fever and reproductive disorders in domestic ruminants. We analyzed the occurrence of C. burnetii and co-infections with six other major pathogens causing abortion in sheep (1242 cases) and goat (371 cases) flocks from Spain and Portugal. After real-time PCR detection, co-infections were established by principal component and cluster analysis that grouped cases based on the joint presence/absence of several microorganisms. C. burnetii and Chlamydia abortus were the most common abortifacient agents with approximately 75% of cases from both hosts testing positive, followed by Toxoplasma gondii, Campylobacter sp., Salmonella enterica, border disease virus and Neospora caninum. C. burnetii was significantly more common than C. abortus in goat abortions (p < 0.001). Co-infections with at least two pathogens were found in more than 66% cases of ovine abortions and 36% cases of caprine abortions testing positive for C. burnetii, mostly including mixed infections with only C. abortus. These findings indicate that both pathogens are the most significant ones to be readily prevented by vaccination in this geographical area. Biosecurity and biocontainment measures are also steadfastly recommended to prevent both the economic losses and public health risks associated with most of these abortifacient agents.
Collapse
|