1
|
Hussen J, Althagafi H. Serum cortisol level as marker of stress in camels: relationship with immunological profile. Front Vet Sci 2025; 12:1570564. [PMID: 40201077 PMCID: PMC11975896 DOI: 10.3389/fvets.2025.1570564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
The present study evaluated serum cortisol levels as a stress indicator in camels and analyzed the influence of some physiological and pathological factors on cortisol levels and their relationship with immunological parameters. A total number of 169 camels (Camelus dromedarius) were grouped in a healthy group (n = 106 camels), a slaughterhouse group (n = 20 camels), a Surra-affected group (n = 27 camels), and a metritis-affected group (n = 16 camels). Female camels exhibited higher cortisol levels compared to males, with non-pregnant and lactating she-camels showing elevated levels relative to their pregnant and non-lactating counterparts. No significant differences in cortisol levels were observed among camel breeds (Majaheem, Magateer, Sawahli, and Omani). Elevated cortisol levels were observed in stressed camels (pre-slaughter) and diseased camels, including those with Surra and bacterial metritis, confirming the reliability of cortisol as a stress marker in this species. Increased cortisol levels were associated with leukocytosis, neutrophilia, and a higher neutrophil-to-lymphocyte ratio. Phenotypically, elevated cortisol level was associated with an expanded CD4 T-cell population, reduced γδ T cells percentage, decreased CD172a expression on neutrophils and monocytes, reduced CD14 and CD163 expression on monocytes, and enhanced CD45 and MHC I expression on lymphocytes. Functionally, higher cortisol levels were linked to increased reactive oxygen species (ROS) production in blood phagocytes. These findings highlight the modulatory effects of cortisol on the camel immune system and emphasize the importance of considering gender and reproductive status when evaluating stress in camels.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hind Althagafi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Faraz A, Masebo NT, Hussain SM, Waheed A, Ishaq HM, Tauqir NA, Abbasi AR, Saleem F, Padalino B. Association of Environmental Temperature and Relative Humidity with Ocular and Flank Temperatures in Dromedary Camels. Animals (Basel) 2025; 15:309. [PMID: 39943079 PMCID: PMC11816120 DOI: 10.3390/ani15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Heat stress represents significant challenges for livestock, adversely affecting their production, reproduction, and overall welfare. This study aimed to explore the interrelationships between environmental and animal-related factors and the flank temperature (FT) and eye temperature (ET) recorded using IRT in dromedary camels. This study was conducted in the Cholistan Desert in 2023, and IRT images of the eyes and flanks were captured from 510 camels across 54 herds. During the image analyses, pictures taken from 499 camels were of good quality and included. The camels were of both sexes and of various ages (minimum 3 years, pubertal and adult stages), and they had diverse physiological statuses (breeding, immature, lactating, non-lactating, and pregnant). Before taking the IRT pictures, ambient temperature and humidity were registered using a weather station, and light intensity was recorded using a lux meter. The ET was associated only with physiological status (p < 0.05), with pregnant females showing the lowest values, while no effects of physiological status, sex, or age were found for FT. The environmental temperature showed a positive correlation with both ET (r = 0.7887) and FT (r = 0.6280), highlighting the sensitivity of camel thermoregulation to temperature fluctuations. As expected, a strong positive correlation between ET and FT (r = 0.6643) was found. Conversely, a significant negative correlation was observed between humidity and ET (-0.7444) and FT (-0.5519), indicating that higher humidity levels lead to decreased temperatures in both regions. Light intensity (lux) exhibited minimal influence on both temperatures, with correlations of 0.1019 for ET and 0.2650 for FT. This study contributes to the field of precision livestock farming by suggesting a possible application of IRT for detecting thermal stress in camels in pastoral settings.
Collapse
Affiliation(s)
- Asim Faraz
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.F.); (A.W.); (H.M.I.); (F.S.)
| | - Naod Thomas Masebo
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Syeda Maryam Hussain
- Department of Livestock Production and Management, Pir Mehr Ali Shah—Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Abdul Waheed
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.F.); (A.W.); (H.M.I.); (F.S.)
| | - Hafiz Muhammad Ishaq
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.F.); (A.W.); (H.M.I.); (F.S.)
| | - Nasir Ali Tauqir
- Department of Animal Nutrition, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Ali Raza Abbasi
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan;
| | - Faizan Saleem
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.F.); (A.W.); (H.M.I.); (F.S.)
| | - Barbara Padalino
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
3
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
4
|
Hussen J, Alkuwayti MA, Falemban B, Al-Sukruwah MA, Alhojaily SM, Humam NAA, Adwani SA. Immunomodulatory Effects of Bacterial Toll-like Receptor Ligands on the Phenotype and Function of Milk Immune Cells in Dromedary Camel. BIOLOGY 2023; 12:biology12020276. [PMID: 36829554 PMCID: PMC9952959 DOI: 10.3390/biology12020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
(1) Toll-like receptors (TLR) are a family of pattern recognition receptors that sense distinct molecular patterns of microbial origin. Although the immune cell composition of camel milk has been recently described, host-pathogen interaction studies in the camel mammary gland are still scarce. The present study aimed to use a whole milk stimulation assay for investigating the modulatory effect of selected Toll-like receptor (TLR) ligands on the phenotype and function of milk immune cells. (2) Methods-camel milk samples (n = 7) were stimulated in vitro with the TLR4 ligand LPS or the TLR2/1 ligand Pam3CSK4, and separated milk cells were evaluated for stimulation-induced shape change, the expression of cell surface markers, phagocytosis, apoptosis, ROS production, and NETosis. Stimulation with PMA was used as a control stimulation. (3) Results-all stimulants induced shape change in milk cells, change in the expression of several cell markers, and increased cell apoptosis and NETosis. In addition, stimulation with Pam3CSK4 and PMA was associated with enhanced ROS production, while only PMA stimulation resulted in enhanced bacterial phagocytosis by milk immune cells. (4) Conclusions-our data indicates selective modulating effects of the TLR ligands LPS and Pam3CSK4 on camel milk phagocytes. These results may have implications for the use of synthetic TLR agonists as immunomodulatory adjuvants of the immune response to intra-mammary vaccines against mastitis pathogens.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: or ; Tel.: +966-135896626
| | | | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammed Ali Al-Sukruwah
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Naser Abdallah Al Humam
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Salma Al Adwani
- Department of Animal & Veterinary Sciences, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
5
|
Hussen J, Shawaf T, Alhojaily SM. The Impact of Anticoagulation Agent on the Composition and Phenotype of Blood Leukocytes in Dromedary Camels. Vet Sci 2022; 9:vetsci9020078. [PMID: 35202331 PMCID: PMC8878879 DOI: 10.3390/vetsci9020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
For the analysis of several cellular biomarkers, blood samples are anticoagulated using different agents with different modes of action. However, for the most commonly used anticoagulants, EDTA and heparin, varying effects on blood components have been reported in different species. As little is known about the impact of anticoagulants on the immunological evaluation of camel leukocytes, the present study analyzed the leukogram, the immunophenotype, and the cell vitality of camel leukocytes separated from blood samples anticoagulated with EDTA or lithium heparin. Using flow cytometry and staining with monoclonal antibodies to several cell surface markers, the composition and immunophenotype of camel leukocytes separated from blood anticoagulated with EDTA or heparin were analyzed. In comparison to EDTA-anticoagulated blood, using lithium heparin as an anticoagulant resulted in reduced numbers of total leukocytes and reduced numbers of neutrophils, which led to a reduced neutrophil to lymphocyte ratio. The analysis of cell necrosis and apoptosis after the staining of leukocytes with the DNA-sensitive dye propidium iodide and the mitochondrial membrane potential probe JC1 revealed a higher fraction of necrotic neutrophils and higher fractions of apoptotic neutrophils and monocytes in heparin blood than in EDTA blood. In addition, monocytes from heparin blood showed higher expression levels of the cell surface markers CD14, CD163, and MHCII when compared to cells from EDTA blood. Similarly, in heparin blood, CD44 and CD172a were expressed higher on neutrophils, while CD11a was expressed higher on lymphocytes in comparison to cells from EDTA blood. The results of the current study indicate the importance of considering the type of anticoagulant when investigating the composition, vitality, and immunophenotype of camel leukocytes.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-135896626
| | - Turke Shawaf
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sameer M. Alhojaily
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Hussen J, Al-Sukruwah MA. The Impact of the Animal Housing System on Immune Cell Composition and Function in the Blood of Dromedary Camels. Animals (Basel) 2022; 12:ani12030317. [PMID: 35158641 PMCID: PMC8833619 DOI: 10.3390/ani12030317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The present study investigated the impacts of a change in animal housing system on selected parameters of the camel immune system. Samples collected from camels during a free-ranging time were compared with samples collected from the same camels during movement-restricted housing. Movement-restricted camels showed elevated myeloperoxidase activity in their serum, a significant shape-change of their neutrophils, and higher reactive oxygen species content in their monocytes and neutrophils. The leukogram pattern of the camels under restricted housing was characterized by increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes. Within the lymphocyte population, only the helper T cells and B cells were expanded in animals under restricted housing. In addition, restricted housing modulated the expression of several cell surface antigens, including monocyte-polarization markers and cell adhesion molecules. Functional analysis of bacterial phagocytosis indicated impaired antibacterial function of phagocytes in camels under restricted housing. In summary, the present study identified significant changes in blood immune cell composition, phenotype, and function in dromedary camels under restricted-housing conditions, and suggests the development of an excitement leukogram in those animals. Abstract Background: The dromedary camel (Camelus dromedarius) is an important livestock animal of desert and semi-desert ecosystems. In recent years, several elements of the camel immune system have been characterized. Stress and excitement induced by animal housing represent the most important environmental factors with potential modulatory effects on the immune system. The present study evaluated the impacts of a restricted-housing system on some phenotypic and functional properties of blood leukocytes in dromedary camels. Methods: Immunofluorescence and flow cytometry were used to comparatively analyze samples collected from camels during a free-ranging time and samples collected from the same camels during movement-restricted housing. Results: In comparison to blood samples collected from the camels during the free-ranging time, samples from movement-restricted camels showed elevated serum myeloperoxidase activity, a significant shape-change in their neutrophils, and higher reactive oxygen species content in their monocytes and neutrophils, indicating increased cellular oxidative stress under movement-restricted housing. The leukogram pattern of the camels under restricted housing was characterized by leukocytosis with increased numbers of neutrophils, eosinophils, lymphocytes, and monocytes, resembling an excitement leukogram pattern. Within the lymphocyte population, only the helper T cells and B cells were expanded in animals under restricted housing. The upregulation of CD163 together with the downregulation of MHC-II on monocytes from excited camels indicate a modulatory potential of animal excitement to polarize monocytes toward an anti-inflammatory phenotype. Functional analysis of bacterial phagocytosis indicates an impaired antibacterial function of phagocytes in excited camels. The downregulation of several cell adhesion molecules on leukocytes from excited camels suggests a role for impaired cell adhesion and tissue migration and leukocyte retention in blood in the observed leukocytosis in animals under excitement. Conclusions: The present study identified significant changes in blood immune cell composition, phenotype, and function in dromedary camels under restricted-housing conditions. The observed changes in leukocyte composition suggest the development of an excitement leukogram pattern in camels under movement-restricted housing. To evaluate the clinical relevance of the observed changes in immune cell phenotype and function for the immune competence of camels under restricted housing, further studies are required.
Collapse
|
7
|
Immunomodulatory Effects of the Cyclooxygenase Inhibitor Lornoxicam on Phenotype and Function of Camel Blood Leukocytes. Animals (Basel) 2021; 11:ani11072023. [PMID: 34359151 PMCID: PMC8300418 DOI: 10.3390/ani11072023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The present study investigated the immunomodulatory effects of the unspecific cyclooxygenase inhibitor lornoxicam on the immunophenotype and some functions of dromedary camel blood leukocytes. Intravenous injection of camels with a single dose of lornoxicam induced a significant change in the camel leukogram, which is characterized by reduced cell numbers of all leukocyte subpopulations. In vitro analysis of cell vitality revealed a pro-apoptotic effect of lornoxicam on camel leukocytes, which may be responsible for the lornoxicam-induced leukocytopenia in vivo. Functional ex vivo and in vitro analysis of the key antimicrobial functions, phagocytosis and ROS production indicates inhibitory effects of lornoxicam on the antimicrobial capacity of the blood phagocytes, monocytes and neutrophils. Furthermore, lornoxicam induced an anti-inflammatory phenotype of monocytes, characterized by reduced expression of major histocompatibility complex (MHC) class II molecules and increased expression of CD163 molecules. The present study identified for the first time inhibitory effects of the COX-inhibitor lornoxicam on some phenotypic and functional properties of camel blood immune cells and recommends considering these effects when using lornoxicam in camel medicine. Abstract (1) Background: Lornoxicam is a nonsteroidal anti-inflammatory drug (NSAID) with analgesic, antiphlogistic and antipyretic effects. The improved tolerance of lornoxicam due to the relatively shorter elimination half-life in comparison to other members of the oxicams may favor its application in the management of pain and inflammation in race dromedary camels. There are no studies conducted yet on the immunomodulatory or immunotoxilogic effect of lornoxicam in camels. Therefore, the current study aimed to evaluate the immunomodulatory effects of the cyclooxygenase inhibitor lornoxicam on some phenotypic and functional properties of camel blood leukocytes; (2) Methods: Using flow cytometry, blood leukocyte composition, monocyte phenotype, and antimicrobial functions of neutrophils and monocytes were analyzed ex vivo after a single dose injection with lornoxicam. In addition, the effect of in vitro incubation of camel blood with lornoxicam on leukocyte cell vitality and antimicrobial functions were evaluated; (3) Results: The injection of camels with a single dose of lornoxicam resulted in a significant change in their leukogram with reduced numbers of total leukocytes, neutrophils, eosinophils, monocytes, and lymphocytes. Within the lymphocyte population, the numbers of CD4+ T cells, γδ T cells, and B cells decreased significantly in blood after injection of camels with lornoxicam. In addition, injection of lornoxicam resulted in decreased abundance of major histocompatibility complex (MHC) class II molecules and increased abundance of the scavenger receptor CD163 on blood monocytes, indicating an anti-inflammatory phenotype of monocytes. Functionally, administration of lornoxicam decreased the capacity of camel neutrophils and monocytes to uptake bacteria and to produce reactive oxygen species (ROS) after bacterial stimulation. Similarly, the in vitro whole blood incubation with lornoxicam resulted in reduced phagocytosis and ROS production activity of the camel blood phagocytes. Flow cytometric analysis of cell vitality, including cell necrosis and apoptosis, revealed a pro-apoptotic effect of lornoxicam on camel leukocytes; (4) Conclusions: Lornoxicam administration, at the dose and intervals utilized herein, induces significant changes in the phenotype and function of camel blood leukocytes. The reduced cell numbers of all studied leukocyte subpopulations in lornoxicam-treated camels, which seems to be a result of enhanced cell apoptosis, indicates an inhibitory effect rather than a modulatory effect of lornoxicam on the camel immune system, which need to be considered when using lornoxicam in camel medicine.
Collapse
|