1
|
Pütsch K, Spitzbarth I, Scheller R, Heenemann K, Hansmann F. Enteritis in raccoons (Procyon lotor) caused by an infection with zoonotic Salmonella and carnivore parvovirus. BMC Vet Res 2025; 21:91. [PMID: 39994695 PMCID: PMC11852810 DOI: 10.1186/s12917-025-04560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The raccoon (Procyon lotor) is a potential carrier of a large number of zoonotic pathogens, and its population is increasing in urban areas in Europe. In the present study, we investigated two cases of fatal enteritis in raccoons in Germany. Parvoviruses are a common cause of enteritis in raccoons, however in these cases an additional infection with zoonotic Salmonella was found, which has not yet been described in other countries than the United States. CASE PRESENTATION Two female raccoons, aged 14 and 18 weeks, were submitted for necropsy. Histopathology of the small intestine revealed crypt degeneration and necrosis, atrophy and fusion of villi, as well as numerous bacteria partially covered by fibrinous pseudomembranes. By microbiological culture of small intestinal samples Salmonella enterica subsp. enterica Serovar Kottbus and Salmonella enterica subsp. enterica Serovar Ferruch were isolated, respectively. In addition, carnivore protoparvovirus type 1 was identified in the small intestine of both animals. CONCLUSIONS The infection of raccoons with carnivore protoparvovirus type 1 results in immunosuppression, which facilitates the spread of other pathogens. Both isolated Salmonella serovars represent a significant zoonotic threat for humans being in contact with the raccoon. Furthermore, in raccoons with sudden death a double infection with carnivore protoparvovirus type 1 and Salmonella should be considered as an important differential diagnosis.
Collapse
Affiliation(s)
- Kristin Pütsch
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, Leipzig, 04103, Germany
| | - Ingo Spitzbarth
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, Leipzig, 04103, Germany
| | - Regina Scheller
- Saxon State Laboratory of Health and Veterinary Affairs, Bahnhofstrasse 58-65, Leipzig, 04158, Germany
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, Leipzig, 04103, Germany
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, Leipzig, 04103, Germany.
| |
Collapse
|
2
|
Li Z, Cai J, Feng C, Wang Y, Fang S, Xue X. Two novel sites determine genetic relationships between CPV-2 and FPV: an epidemiological survey of canine and feline parvoviruses in Changchun, China (2020). Front Vet Sci 2024; 11:1444984. [PMID: 39559542 PMCID: PMC11571754 DOI: 10.3389/fvets.2024.1444984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Canine parvovirus (CPV-2) and feline parvovirus (FPV) cause severe hemorrhagic diarrhea disease in dogs, cats, and fur-bearing and wildlife carnivores worldwide, continuing to pose significant threats. In this study, 140 rectal swabs were collected from 70 domestic dogs and 70 cats with clinical diarrhea in veterinary clinics in Changchun during 2020. A total of 64.3% (45/70) of dogs and 55.7% (39/70) of cats tested positive for CPV-2 or FPV using colloidal gold strips. Amino acid (aa) sequence alignment of the VP2 protein from 39 CPV-2 and 36 FPV samples revealed that 79.5% (31/39) were CPV-2c, 17.9% (7/39) were a new CPV-2a, and 2.6% (1/39) were mink enteritis virus (MEV). and 8.3% (3/36) FPV from the cats was infected by CPV-2, which suggested that CPV-2c was the dominant variant in dogs and FPV was the major pathogen in cats in Changchun city. Phylogenetic relationships of VP2 genes showed that 26 parvoviruses were closely related to domestic strains previously published in China; however, 8 FPVs and CPV-JL-15/China/2020 were clustered in the lineage of South Asiatic and European countries, and 7 out of 8 FPVs were close to Italy. In addition to Q247H, I248Y, F544Y, and E/V545V/K, two novel site mutations of N23D or L630P in NS1 protein, associated with viral cross-species transmissions, were first found as a reminder of genetic relationships of CPV-2 variants and FPVs in the same branch. Thus, regular and massive virus surveillance of parvovirus is necessary to cope with its ongoing infection, circulation, mutations, and evolutions to new subtypes with strong survival abilities.
Collapse
Affiliation(s)
- Zishu Li
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jiaxi Cai
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Chuchu Feng
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yu Wang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Shuren Fang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xianghong Xue
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
3
|
Yu Z, Wang W, Yu C, He L, Ding K, Shang K, Chen S. Molecular Characterization of Feline Parvovirus from Domestic Cats in Henan Province, China from 2020 to 2022. Vet Sci 2024; 11:292. [PMID: 39057976 PMCID: PMC11281718 DOI: 10.3390/vetsci11070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat FPV infections were collected from Henan Province from 2020 to 2022. The previously published full-length sequence primers of VP2 and NS1 genes were used to amplify the targeted genes of these samples, and the complete gene sequences of 11 VP2 and 21 NS1 samples were obtained and analyzed. Analysis showed that the amino acid homology of the VP2 and NS1 genes of these isolates was 96.1-100% and 97.6-100%, respectively. The phylogenetic results showed that the VP2 and NS1 genes of the local isolates were mainly concentrated in the G1 subgroup, while the vaccine strains were distributed in the G3 subgroup. Finally, F81 cells were inoculated with the local endemic isolate Luoyang-01 (FPV-LY strain for short) for virus amplification, purification, and titer determination, and the pathogenesis of FPV-LY was detected. After five generations of blind transmission in F81 cells, cells infected with FPV-LY displayed characteristic morphological changes, including a round, threadlike, and wrinkled appearance, indicative of viral infection. The virus titer associated with this cytopathic effect (CPE) was measured at 1.5 × 106 TCID50/mL. Subsequent animal regression tests confirmed that the virus titer of the PFV-LY isolate remained at 1.5 × 106 TCID50/mL, indicating its highly pathogenic nature. Cats exposed to the virus exhibited typical clinical symptoms and pathological changes, ultimately succumbing to the infection. These results suggest that the gene mutation rate of FPV is increasing, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and novel genetic variants. The data also indicate that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV isolates.
Collapse
Affiliation(s)
- Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjie Wang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chuan Yu
- Pet & Human Health Engineering Technology Center, Luoyang Polytechnic, Luoyang 471900, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
5
|
Chukwudozie KI, Wang H, Wang X, Lu C, Xue J, Zhang W, Shan T. Viral metagenomic analysis reveals diverse viruses and a novel bocaparvovirus in the enteric virome of snow leopard ( Panthera uncia). Heliyon 2024; 10:e29799. [PMID: 38681641 PMCID: PMC11053277 DOI: 10.1016/j.heliyon.2024.e29799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The enteric virome, comprising a complex community of viruses inhabiting the gastrointestinal tract, plays a significant role in health and disease dynamics. In this study, the fecal sample of a wild snow leopard was subjected to viral metagenomic analysis using a double barcode Illumina MiSeq platform. The resulting reads were de novo assembled into contigs with SOAPdenovo2 version r240. Additional bioinformatic analysis of the assembled genome and genome annotation was done using the Geneious prime software (version 2022.0.2). Following viral metagenomic analysis and bioinformatic analysis, a total of 7 viral families and a novel specie of bocaparvovirus tentatively named Panthera uncia bocaparvovirus (PuBOV) with GenBank accession number OQ627713 were identified. The complete genome of PuBOV was predicted to contain 3 open reading frames (ORFs), contains 5433 nucleotides and has a G + C content of 47.40 %. BLASTx analysis and pairwise sequence comparison indicated the novel virus genome was a new species in the genus Bocaparvovirus based on the species demarcation criteria of the International Committee on the Taxonomy of Viruses. This study provides valuable insights into the diversity and composition of the enteric virome in wild endangered snow leopards. The identification and characterization of viruses in wildlife is crucial for developing effective strategies to manage and mitigate potential zoonotic and other viral disease threats to human and animal health.
Collapse
Affiliation(s)
- Kingsley Ikechukwu Chukwudozie
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
- Department of Microbiology, University of Nigeria, Zip code: 410001, PR China
| | - Haoning Wang
- Heilongjiang cold Region Wetland Ecology and Environment Research key laboratory, school of geography and tourism, Harbin university, 109 zhongxing Road, Harbin, 150086, Heilongjiang province, PR China
- School of Geography and Tourism, Harbin University, Harbin 150086, Heilongjiang province, PR China
| | - Xiaolong Wang
- The Key Laboratory of Wildlife Diseases and Biosecurity Management of Heilongjiang Province. Zip code: 154100, PR China
| | - Chunying Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Jiaxin Xue
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang. Zip code: 212300, PR China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
6
|
Milićević V, Glišić D, Veljović L, Vasić A, Milovanović B, Kureljušić B, Paunović M. Protoparvovirus carnivoran 1 infection of golden jackals Canis aureus in Serbia. Vet Res Commun 2024; 48:1203-1209. [PMID: 37932576 DOI: 10.1007/s11259-023-10249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Parvoviruses are among the major animal pathogens that can cause considerable health disorders ranging from subclinical to lethal in domestic and wild animals. Golden jackal (Canis aureus), an expanding European species, is a reservoir of many pathogens, including vector-borne diseases and zoonoses. Given the importance of parvovirus infections in dogs and cats, this study aimed to unfold the virus prevalence and molecular characterisation in the golden jackal population in Serbia. The spleen samples from 68 hunted jackals during 2022/2023 were tested for the VP2-specific genome region of Protoparvovirus carnivoran 1 by PCR. BLAST analysis of partial VP2 sequences obtained from three animals (4.4%) revealed the highest similarity to Protoparvovirus carnivoran 1, genogroup Feline panleukopenia virus, which is the second report on FPV infection in jackals. Based on specific amino acid residues within partial VP2, the jackals' Protoparvovirus carnivoran 1 was also classified as FPV. One jackal's strain showed two synonymous mutations at positions 699 and 1167. Although species cross-transmission could not be established, jackals' health should be maintained by preventing the transmission of viruses to native species and vice versa. Although jackals are considered pests, their role as natural cleaners is of greater importance. Therefore, further monitoring of their health is needed to understand the influence of infectious diseases on population dynamics and to determine the relationship between domestic predators and jackals and the direction of cross-species transmission.
Collapse
Affiliation(s)
- Vesna Milićević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia.
| | - Dimitrije Glišić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ljubiša Veljović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ana Vasić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Bojan Milovanović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Branislav Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Milan Paunović
- Natural History Museum, Njegoševa 51, Belgrade, 11111, Republic of Serbia
| |
Collapse
|
7
|
Xie Q, Sun Z, Xue X, Pan Y, Zhen S, Liu Y, Zhan J, Jiang L, Zhang J, Zhu H, Yu X, Zhang X. China-origin G1 group isolate FPV072 exhibits higher infectivity and pathogenicity than G2 group isolate FPV027. Front Vet Sci 2024; 11:1328244. [PMID: 38288138 PMCID: PMC10822907 DOI: 10.3389/fvets.2024.1328244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Introduction Feline parvovirus (FPV), a single-stranded DNA virus, is accountable for causing feline panleukopenia, a highly contagious and often lethal disease that primarily affects cats. The epidemiology prevalence and pathogenicity of FPV in certain regions of China, however, remains unclear. The aim of this research was to investigate the epidemiology of FPV in different regions of China in 2021 and compare its infectivity and pathogenicity. Methods In this research, a total of 36 FPV strains were obtained from diverse regions across China. Phylogenetic analysis was performed based on the VP2 and NS1 sequences, and two representative strains, FPV027 and FPV072, which belonged to different branches, were selected for comparative assessment of infectivity and pathogenicity. Results and discussion The results revealed that all strains were phylogenetically classified into two groups, G1 and G2, with a higher prevalence of G1 strains in China. Both in vitro and in vivo experiments demonstrated that FPV072 (G1 group) exhibited enhanced infectivity and pathogenicity compared to FPV027 (G2 Group). The structural alignment of the VP2 protein between the two viruses revealed mutations in residues 91, 232, and 300 that may contribute to differences in infectivity and pathogenicity. The findings from these observations will contribute significantly to the overall understanding of the molecular epidemiology of FPV in China and facilitate the development of an effective FPV vaccine.
Collapse
Affiliation(s)
- Qiaoqiao Xie
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Zhen Sun
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xiu Xue
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Yajie Pan
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Shuye Zhen
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Yang Liu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Jiuyu Zhan
- School of Life Sciences, Ludong University, Yantai, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| |
Collapse
|
8
|
Zhao S, Hu H, Lan J, Yang Z, Peng Q, Yan L, Luo L, Wu L, Lang Y, Yan Q. Characterization of a fatal feline panleukopenia virus derived from giant panda with broad cell tropism and zoonotic potential. Front Immunol 2023; 14:1237630. [PMID: 37662912 PMCID: PMC10469695 DOI: 10.3389/fimmu.2023.1237630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huanyuan Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | | | - Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liheng Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Lin Wu
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|