1
|
Hashish A, McKeen L, Sato Y, El-Gazzar M. Development and Evaluation of Mycoplasma gallisepticum Challenge Model in Layer Pullets. Avian Dis 2024; 68:145-155. [PMID: 38885057 DOI: 10.1637/aviandiseases-d-23-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/23/2024] [Indexed: 06/20/2024]
Abstract
Manufacturers of Mycoplasma gallisepticum (MG) modified live vaccines usually recommend a single application at 8 wk of age. This makes 12-16-wk-old layer pullets suitable for challenge studies intended to evaluate these vaccines. Numerous challenge models in different poultry species and ages have been reported. However, there is not an established layer pullet challenge model for this age. The aim of this study is to develop a suitable challenge model in 12-wk-old layer pullets. MG Rlow strain was used as the challenge strain, and its ability to induce clinical signs and lesions in 12-wk-old Hy-Line W-36 layer pullets was evaluated. Three different doses (low, 7.95 × 104 color-changing units [CCU]/bird; medium, 7.95 × 106 CCU/bird; and high, 7.95 × 108 CCU/bird) via three different routes (eye drop, fine spray, and contact infection) were compared and evaluated using different parameters. At 14 days post-challenge, there were no mortalities in any of the groups throughout the study. Layer pullets directly challenged with the high dose via the fine spray route showed the clearest and most consistent results (clinical signs, positive quantitative real-time PCR [qPCR], seroconversion, air sac scoring, and histopathological changes of the tracheal mucosa). Medium and low challenge doses applied via fine spray or eye drop did not show consistent results. Rlow strain was able to spread to the contact infection birds, as confirmed by the positive qPCR results; however, none of the contact-infected birds showed any clinical signs or gross or microscopic lesions. Our results suggest that a high dose (7.95 × 108 CCU/bird) administered through a fine spray route is the model of choice in any future MG vaccine evaluation trials in 12-wk-old layer pullets.
Collapse
Affiliation(s)
- Amro Hashish
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Lauren McKeen
- Department of Statistics, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| |
Collapse
|
2
|
Lenchenko E, Sachivkina N, Petrukhina O, Petukhov N, Zharov A, Zhabo N, Avdonina M. Anatomical, pathological, and histological features of experimental respiratory infection of birds by biofilm-forming bacteria Staphylococcus aureus. Vet World 2024; 17:612-619. [PMID: 38680142 PMCID: PMC11045526 DOI: 10.14202/vetworld.2024.612-619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim The pathogenesis of staphylococcal infections is mediated by virulence factors, such as enzymes, toxins, and biofilms, which increase the resistance of microorganisms to host immune system evasion. Testing and searching for standardized multi-level algorithms for the indication and differentiation of biofilms at the early stages of diagnosis will contribute to the development of preventive measures to control the critical points of technology and manage dangerous risk factors for the spread of infectious diseases. This research aimed to study the main stages of Staphylococcus aureus biofilm formation in in vitro experiments and to analyze the dynamics of respiratory syndrome development in chickens infected with these bacteria. Materials and Methods Experimental reproduction of the infectious process was performed using laboratory models: 10-day-old White Leghorn chickens (n = 20). Before the experiments, the birds were divided into two groups according to the principle of analogs: Group I (control, n = 10): the birds were intranasally inoculated with 0.5 cm3 of 0.9% NaCl solution; Group II (experiment, n = 10): the birds were intranasally inoculated with a suspension of S. aureus bacteria, 0.5 cm3, concentration 1 billion/cm3. Results Colonization of individual areas of the substrate under study in vitro occurred gradually from the sedimentation and adhesion of single motile planktonic cells to the attachment stage of microcolony development. Staining preparations with gentian violet due to the "metachromosia" property of this dye are a quick and fairly simple way to differentiate cells and the intercellular matrix of biofilms. Fixation with vapors of glutaraldehyde and osmium tetroxide preserves the natural architecture of biofilms under optical and scanning electron microscopy. Pure cultures of S. aureus microorganisms were isolated from the blood, lungs, small intestine, liver, kidneys, and spleen after 5-10 days during experimental infection of chickens. Clinical signs of respiratory syndrome developed within 5-6 days after infection. Acute and subacute serous-fibrinous airsacculitis, characterized by edema and thickening of the membranes of the air sacs and the presence of turbid, watery, foamy contents in the cavity, was the most characteristic pathomorphological sign. The signs of acute congestive hyperemia and one-sided serous-fibrinous pneumonia developed with significant thickening of fibrinous deposits. In Garder's gland, there was an increase in the number of secretory sections, indicating hypersecretion of the glands. In the lymphoid follicles of Meckel's diverticulum, leukocytes, usually lymphocytes, and pseudoeosinophils were detected. Conclusions Hydration and heteromorphism of the internal environment of biofilms determine the localization of differentiated cells in a three-dimensional matrix for protection against adverse factors. The most characteristic pathomorphological sign was the development of acute and subacute serous-fibrinous airsacculitis when reproducing the infectious process in susceptible models. There was a significant thickening of fibrinous deposits and signs of acute congestive hyperemia and one or two serous-fibrinous pneumonia developed.
Collapse
Affiliation(s)
- Ekaterina Lenchenko
- Department of Veterinary Medicine, Russian Biotechnological University (BIOTECH University), 125080, Moscow, Russia
| | - Nadezhda Sachivkina
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Olesya Petrukhina
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nikolay Petukhov
- Department of Technosphere Security, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Andrey Zharov
- Department of Technosphere Security, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Marina Avdonina
- Department of Linguistics and Intercultural Communication of the Faculty of Distance Learning and Part-Time Education of Moscow State Linguistic University, 119034 Moscow, Russia
| |
Collapse
|
3
|
Fries-Craft K, Graham D, Hargis BM, Bobeck EA. Evaluating a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens coinfection necrotic enteritis model in broiler chickens: repeatability, dosing, and immune outcomes. Poult Sci 2023; 102:103018. [PMID: 37651774 PMCID: PMC10480656 DOI: 10.1016/j.psj.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Coccidiosis and necrotic enteritis negatively impact poultry production, making challenge model repeatability important for evaluating mitigation strategies. Study objectives were: 1) evaluate Salmonella Typhimurium-Eimeria maxima-Clostridium perfringens necrotic enteritis coinfection model repeatability and 2) investigate E. maxima dose and early S. Typhimurium challenge on immune responses. Three trials using Ross 308 chicks assigned to 12 cages/trial (7 chicks/cage) in wire-floor brooders were completed. Trials 1 and 2 determined E. maxima dose for necrotic enteritis challenge in trial 3. Chicks in trials 1 and 2 were inoculated with 0 (control), 5, 15, or 25,000 sporulated E. maxima M6 oocysts on d 14 and jejunal lesion scores evaluated on d 20. In trial 3, chicks were assigned to control or necrotic enteritis challenge (42 chicks/group). Necrotic enteritis challenge chicks were inoculated with 1 × 105 colony forming units (CFU) S. Typhimurium on d 1, 15,000 E. maxima oocysts on d 14, and 1 × 108 CFU C. perfringens on d 19 and 20 with lesion scoring on d 22. Bird and feeder weights were recorded throughout each trial. Peripheral blood mononuclear cells (PBMC) were isolated from 1 chick/cage at baseline (all trials), 4 chicks/dose (trials 1 and 2) or 8 chicks/challenge (trial 3) 24 h post-inoculation (pi) with E. maxima for immunometabolic assays and immune cell profiling. Data were analyzed by mixed procedure (SAS 9.4) with challenge and timepoint fixed effects (P ≤ 0.05, trends 0.05 ≤ P ≤ 0.01). Inoculating chicks with 15,000 E. maxima oocysts increased d 14 to 20 FCR 79 points (trials 1 and 2; P = 0.009) vs. unchallenged chicks and achieved a target lesion score of 2. While C. perfringens challenge reduced trial 3 performance, average lesion scores were <1. Salmonella inoculation on d 1 tended to increase PBMC ATP production 41.6% 24 hpi with E. maxima vs. chicks challenged with E. maxima only (P = 0.06). These results provide insight for future model optimization and considerations regarding S. Typhimurium's effect on E. maxima immune response timelines.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Ayala DI, Grum DS, Evans NP, Russo KN, Kimminau EA, Trible BR, Lahoti MM, Novak CL, Karnezos TP. Identification and characterization of the causative agents of Focal Ulcerative Dermatitis in commercial laying hens. Front Vet Sci 2023; 10:1110573. [PMID: 36846268 PMCID: PMC9945107 DOI: 10.3389/fvets.2023.1110573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Focal Ulcerative Dermatitis (FUDS) is an emerging dermatological disease that affects cage-free laying flocks, it is characterized by the development of a lesion on the dorsum of the birds; FUDS is sporadic in nature and can result in a drop in egg production and up to 50% of cumulative mortality. A total of two cage-free flocks (flock 1: no history of FUDS; flock 2: birds affected with FUDS) from a commercial laying hen operation in the mid-west U.S. were sampled in this study. The microbial composition of skin, cloacal, cecal, and ileal samples from each bird was characterized through next generation sequencing (NGS). Results identified Staphylococcus aureus and Staphylococcus agnetis as the potential causative agents of FUDS, being the most predominant in FUDS positive birds. These results were confirmed by plating, with both staphylococci as the only pathogens isolated from lesions of FUDS positive birds. A total of 68 confirmed Staphylococcus isolates from skin and environmental samples were further analyzed by whole genome sequencing (WGS) for the presence of antimicrobial resistance (AMR) genes and virulence factors that could have contributed to the development of FUDS. Forty-four-point one-two percent of the isolates had between one and four acquired AMR genes encoding for macrolides, lincosamides, spectrogramines, and beta-lactams resistance. Six classes of virulence factors associated with adherence, enzyme, immune evasion, secretion system, toxin, and iron uptake were identified. The antimicrobial effect of 4 proprietary Bacillus Direct Fed Microbial (DFM) combinations was evaluated against the Staphylococcus aureus and Staphylococcus agnetis isolates, by agar well-diffusion (AWD) assay and competitive exclusion (CE) on broth culture. Through this antimicrobial screening, a particular two-strain combination of Bacillus pumilus was identified as the most effective inhibitor of both staphylococci. A customized Bacillus pumilus product is being used at different farms with history of FUDS resulting in the successful inhibition of both Staphylococcus aureus and Staphylococcus agnetis, decreasing FUDS mortalities, and improving harvestable eggs.
Collapse
Affiliation(s)
| | - Daniel S. Grum
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Nicholas P. Evans
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Kay N. Russo
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Emily A. Kimminau
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Benjamin R. Trible
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Manohar M. Lahoti
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Curtis L. Novak
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | | |
Collapse
|
5
|
Fries-Craft K, Lamont SJ, Bobeck EA. Implementing real-time immunometabolic assays and immune cell profiling to evaluate systemic immune response variations to Eimeria challenge in three novel layer genetic lines. Front Vet Sci 2023; 10:1179198. [PMID: 37143494 PMCID: PMC10153671 DOI: 10.3389/fvets.2023.1179198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Evaluating differences in immune responses to Eimeria spp. between poultry genetic lines could be valuable for understanding favorable traits to address coccidiosis, a costly poultry disease. The objective was to compare peripheral blood mononuclear cell (PBMC) immunometabolism and composition during Eimeria challenge in three distinct and highly inbred genetic lines; Leghorn Ghs6, Leghorn Ghs13, and Fayoumi M5.1. Methods At hatch, 180 chicks (60/ line) were placed in wire-floor cages (10 chicks/cage) and fed a commercial diet. Baseline PBMC were isolated on d21 (10 chicks/line) and 25 chicks/line were inoculated with 10X Merck CocciVac®-B52 (Kenilworth, NJ), creating 6 genetic line × Eimeria groups total. Chicks were euthanized on 1, 3, 7, and 10d post-inoculation (pi; 5 chicks/ line × Eimeria group) for PBMC isolation with body weight and feed intake recorded throughout. Immunometabolic assays to determine PBMC ATP production profiles and glycolytic activity were implemented along with flow cytometric immune cell profiling. Genetic line × Eimeria challenge, and line´challenge fixed effects were analyzed using the MIXED procedure (SAS 9.4; P ≤ 0.05). Results and Discussion Before inoculation, M5.1 chicks had 14.4-25.4% greater average daily gain (ADG) with 19.0-63.6% increased monocyte/macrophage+, Bu-1+ B cell, and CD3+ T cell populations compared to both Ghs lines (P < 0.0001) but similar immunometabolic phenotype. The Eimeria main effect reduced ADG by 61.3% from 3-7dpi (P = 0.009) except in M5.1 chicks, where no ADG difference due to challenge was found. At 3dpi, Eimeria-challenged M5.1 chicks had 28.9 and 33.2% reduced PBMC CD3+ T cells and CD3+CD8α+ cytotoxic T cells than unchallenged chicks, suggesting early and preferential recruitment from systemic circulation to tissues local to Eimeria challenge (i.e., intestine; P ≤ 0.01). Both Ghs lines displayed 46.4-49.8% T cell reductions at 10dpi with 16.5-58.9% recruitment favoring underlying CD3+CD4+ helper T cells. Immunometabolic responses in Eimeria-challenged Ghs6 and Ghs13 chicks were characterized by a 24.0-31.8% greater proportion of ATP from glycolysis compared to unchallenged counterparts at 10dpi (P = 0.04). These results suggest that variable T cell subtype recruitment timelines in addition to altered systemic immunometabolic requirements may work synergistically to determine favorable immune responses to Eimeria challenge.
Collapse
|
6
|
Meyer MM, Lamont SJ, Bobeck EA. Mitochondrial and Glycolytic Capacity of Peripheral Blood Mononuclear Cells Isolated From Diverse Poultry Genetic Lines: Optimization and Assessment. Front Vet Sci 2022; 8:815878. [PMID: 35155649 PMCID: PMC8831803 DOI: 10.3389/fvets.2021.815878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Cellular metabolic preference is a culmination of environment, nutrition, genetics, and individual variation in poultry. The Seahorse XFe24 analyzer was used to generate foundational immune cellular metabolic data in layer, broiler, and legacy genetic strains using fresh chicken peripheral blood mononuclear cells (PBMCs). Baseline mitochondrial respiration [oxygen consumption rate (OCR)] and glycolytic activity [extracellular acidification rate (ECAR)] were determined in modern commercial laying hen (Bovans White) and broiler (Ross 308) lines, as well as the highly inbred lines of Iowa State University (L8, Fayoumi M-15.2, Spanish, Ghs-6), partially inbred broiler line, and advanced intercrosses of broiler by Fayoumi M-15.2 and broiler by Leghorn lines. Commercial broiler vs. Bovans layer and unvaccinated vs. vaccinated Bovans layer immune cell metabolic potential were compared following an in-assay pathway inhibitor challenge. Titrations consistently showed that optimal PBMC density in laying hens and broilers was 3 million cells per well monolayer. Assay media substrate titrations identified 25 mM glucose, 1 mM glutamine, and 1 mM sodium pyruvate as the optimal concentration for layer PBMCs. Pathway inhibitor injection titrations in Bovans layers and broilers showed that 0.5 μM carbonyl cyanide-4 phenylhydrazone (FCCP) and 1 μM oligomycin were optimal. Baseline OCR and ECAR were significantly affected by genetic line of bird (p < 0.05), with the dual-purpose, L8 inbred line showing the highest OCR (mean 680 pmol/min) and the partially inbred broiler line showing the greatest ECAR (mean 74 mpH/min). ECAR metabolic potential tended to be greater in modern layers than broilers (p < 0.10), indicating increased ability to utilize the glycolytic pathway to produce energy. OCR was significantly higher in vaccinated than unvaccinated hens (p < 0.05), while baseline ECAR values were significantly lower in vaccinated Bovans laying hens, showing increased oxidative capacity in activated immune cells. These baseline data indicate that different genetic strains of birds utilized the mitochondrial respiration pathway differently and that modern commercial lines may have reduced immune cell metabolic capacity compared with legacy lines due to intense selection for production traits. Furthermore, the Seahorse assay demonstrated the ability to detect differences in cellular metabolism between genetic lines and immune status of chickens.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|