1
|
West AG, Digby A, Taylor MW. The mycobiota of faeces from the critically endangered kākāpō and associated nest litter. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Annie G. West
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Te Papa Atawhai Department of Conservation, Kākāpō Recovery Programme, Invercargill, New Zealand
| | - Michael W. Taylor
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
2
|
Intestinal Ecology Changes in Diarrheic Père David's Deer Revealed by Gut Microbiota and Fecal Metabolites Analysis. Animals (Basel) 2022; 12:ani12233366. [PMID: 36496887 PMCID: PMC9737761 DOI: 10.3390/ani12233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Diarrhea is one of the most common diseases affecting the health of Père David's deer (Elaphurus davidianus). It is believed that an imbalanced intestinal ecology contributes to the etiology of the condition. However, little is known about how the intestinal ecology changes in these diarrheic animals. In this study, 16S rRNA gene sequencing and ultra-high performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS) were used to investigate the gut microbiota and fecal metabolites in five Père David's deer with diarrhea. The results showed that when compared with healthy individuals, considerable changes in the gut microbiome were observed in diarrheic animals, including a significant reduction in microbial diversity and gut microbiota composition alterations. Furthermore, the profiles of numerous fecal metabolites were altered in diarrheic individuals, showing large-scale metabolite dysregulation. Among metabolites, acylcarnitines, lysophosphatidylcholine, bile acids, and oxidized lipids were elevated significantly. Constantly, several metabolic pathways were significantly altered. Interestingly, predicted metabolic pathways based on 16S rRNA gene sequence and differential metabolite analysis showed that lipid metabolism, cofactor, and vitamin metabolism were altered in sick animals, indicating microbiota-host crosstalk in these deer. When combined, the results provide the first comprehensive description of an intestinal microbiome and metabolic imbalance in diarrheic Père David's deer, which advances our understanding and potential future treatment of diarrheic animals.
Collapse
|
3
|
Miller CQ, Saeed OAM, Collins K. Gastrointestinal histoplasmosis complicating pediatric Crohn disease: A case report and review of literature. World J Gastrointest Endosc 2022; 14:648-656. [PMID: 36303809 PMCID: PMC9593511 DOI: 10.4253/wjge.v14.i10.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Infection with Histoplasma capsulatum (H. capsulatum) can lead to disseminated disease involving the gastrointestinal tract presenting as diffuse abdominal pain and diarrhea which may mimic inflammatory bowel disease (IBD).
CASE SUMMARY We report a case of 12-year-old boy with presumptive diagnosis of Crohn disease (CD) that presented with several months of abdominal pain, weight loss and bloody diarrhea. Colonoscopy showed patchy moderate inflammation characterized by erythema and numerous pseudopolyps involving the terminal ileum, cecum, and ascending colon. Histologic sections from the colon biopsy revealed diffuse cellular infiltrate within the lamina propria with scattered histiocytic aggregates, and occasional non-necrotizing granulomas. Grocott-Gomori’s Methenamine Silver staining confirmed the presence of numerous yeast forms suggestive of Histoplasma spp., further confirmed with positive urine Histoplasma antigen (6.58 ng/mL, range 0.2-20 ng/mL) and serum immunoglobulin G antibodies to Histoplasma (35.9 EU, range 10.0-80.0 EU). Intravenous amphotericin was administered then transitioned to oral itraconazole. Follow-up computed tomography imaging showed a left lower lung nodule and mesenteric lymphadenopathy consistent with disseminated histoplasmosis infection.
CONCLUSION Gastrointestinal involvement with H. capsulatum with no accompanying respiratory symptoms is exceedingly rare and recognition is often delayed due to the overlapping clinical manifestations of IBD. This case illustrates the importance of excluding infectious etiologies in patients with “biopsy-proven” CD prior to initiating immunosuppressive therapies. Communication between clinicians and pathologists is crucial as blood cultures and antigen testing are key studies that should be performed in all suspected cases of histoplasmosis to avoid misdiagnosis and inappropriate treatment.
Collapse
Affiliation(s)
- C Quinn Miller
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Omer A M Saeed
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Katrina Collins
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Chen X, An M, Zhang W, Li K, Kulyar MFEA, Duan K, Zhou H, Wu Y, Wan X, Li J, Quan L, Mai Z, Bai W, Wu Y. Integrated Bacteria-Fungi Diversity Analysis Reveals the Gut Microbial Changes in Buffalo With Mastitis. Front Vet Sci 2022; 9:918541. [PMID: 35832328 PMCID: PMC9271935 DOI: 10.3389/fvets.2022.918541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
The gut microbial community is closely related to mastitis, but studies regarding the influences of mastitis on gut microbiota in buffalo remain scarce. Herein, we characterized the differences in gut bacterial and fungal communities between mastitis-affected and healthy buffalos. Interestingly, although mastitis had no effect on gut bacterial and fungal diversities in the buffalos, some bacterial and fungal taxa were significantly altered. Bacterial and fungal taxonomic analysis showed that the preponderant bacterial phyla (Firmicutes and Bacteroidetes) and fungal phyla (Ascomycota and Basidiomycota) in buffalo were the same regardless of health status. At the level of genus, the changes in some gut bacterial and fungal abundances between both groups were gradually observed. Compared with healthy buffalos, the proportions of 3 bacterial genera (uncultured_bacterium_f_Muribaculaceae, Eubacterium_nodatum_group, and Lachnoclostridium_10) and 1 fungal genus (Pichia) in the mastitis-affected buffalo were significantly increased, whereas 4 bacterial genera (Ruminococcus_2, Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum) and 4 fungal genera (Cladosporium, Thermothelomyces, Ganoderma and Aspergillus) were significantly decreased. Taken together, this research revealed that there was significant difference in the compositions of the gut microbial community between the healthy and mastitis-affected buffalos. To our knowledge, this is the first insight into the characteristics of the gut microbiota in buffalos with mastitis, which is beneficial to understand the gut microbial information of buffalo in different health states and elucidate the pathogenesis of mastitis from the gut microbial perspective.
Collapse
Affiliation(s)
- Xiushuang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Kun Duan
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou, China
| | - Hui Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Wenxia Bai
- Nanjing Superbiotech Co. Ltd., Nanjing, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu
| |
Collapse
|
5
|
Yang Q, Zhang L, Li Q, Gu M, Qu Q, Yang X, Yi Q, Gu K, Kuang L, Hao M, Xu J, Yang H. Characterization of microbiome and metabolite analyses in patients with metabolic associated fatty liver disease and type II diabetes mellitus. BMC Microbiol 2022; 22:105. [PMID: 35421921 PMCID: PMC9011963 DOI: 10.1186/s12866-022-02526-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
State-of-the-art renewal has indicated the improvement of diagnostics of patients with metabolic associated fatty liver disease (MAFLD) and/or type II diabetes mellitus (T2DM) by dissecting the clinical characteristics as well as genomic analysis. However, the deficiency of the characterization of microbial and metabolite signatures largely impedes the symptomatic treatment.
Methods
For the purpose, we retrospectively analyzed the clinical data of 20 patients with MAFLD (short for “M”), 20 cases with MAFLD and T2DM (short for “MD”), together with 19 healthy donors (short for “Ctr”). Microbial and metabolite analyses were further conducted to explore the similarities and differences among the aforementioned populations based on feces and blood samples, respectively.
Results
Compared with those in the Ctr group, patients with M or MD revealed multifaceted similarities (e.g., Age, ALP, LDL, BUN) and distinctions in clinical indicators of liver (e.g., BMI, ALT, PCHE, CAP). With the aid of microbial and metabolite analyses as well as bioinformatic analyses, we found that the characteristics of gut microbiota (e.g., abundance, hierarchical clustering, cladogram, species) and lipid metabolism (e.g., metabolite, correlation coefficient and scatter plot) were distinct among the indicated groups.
Conclusions
The patients with MD revealed multifaceted similarities and distinctions in characteristics of microbiome and metabolites with those in the M and HD groups, and in particular, the significantly expressed microbes (e.g., Elusimicrobiota, Berkelbacteria, Cyanobacteria, Peregrinibacteria) and lipid metabolites (e.g., Lipid-Q-P-0765, Lipid-Q-P-0216, Lipid-Q-P-0034, Lipid-Q-P-0800), which would collectively benefit the clinical diagnosis of MAFLD and T2DM.
Collapse
|