1
|
Yang L, Li S, Chen Y, Wang M, Yu J, Bai W, Hong L. Combined Metabolomics and Network Pharmacology Analysis Reveal the Effect of Rootstocks on Anthocyanins, Lipids, and Potential Pharmacological Ingredients of Tarroco Blood Orange ( Citrus sinensis L. Osbeck). PLANTS (BASEL, SWITZERLAND) 2024; 13:2259. [PMID: 39204695 PMCID: PMC11358934 DOI: 10.3390/plants13162259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion-rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity ('Trifoliate orange' (Z) > 'Citrange' (ZC) > 'Hongju' (H) > 'Ziyang Xiangcheng' (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Yang Chen
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Jianjun Yu
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| | - Wenqin Bai
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (L.Y.); (S.L.); (M.W.); (J.Y.)
- Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China;
| |
Collapse
|
2
|
Cao X, Shi K, Xu Y, Zhang P, Zhang H, Pan S. Integrated metabolomics and network pharmacology to reveal antioxidant mechanisms and potential pharmacological ingredients of citrus herbs. Food Res Int 2023; 174:113514. [PMID: 37986422 DOI: 10.1016/j.foodres.2023.113514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
The benefits of citrus herbs are strongly associated with their secondary metabolites. In the study, we conducted widely-targeted metabolomics and ultra-high performance liquid chromatography (UPLC) to compare the variability of ingredients in four citrus herbs. In total, we discovered 1126 secondary metabolites, primarily comprising flavonoids, phenolic acids, lignans and coumarins, and alkaloids. Differential metabolites of citrus herbs were searched by multivariate statistical analysis. Notably, Citri Reticulatae Pericarpium contained higher levels of flavonoids, while Zhique and Huajuhong demonstrated a greater abundance of coumarins. Among the flavonoids determined by UPLC, Guangchenpi demonstrated significantly elevated levels of polymethoxyflavones (tangeretin and nobiletin) compared to other citrus herbs. Additionally, we determined their antioxidant capacity (Chenpi > Guangchenpi > Huajuhong > Zhique) using in vitro assays. Finally, we utilized network pharmacology to explore the antioxidant mechanisms and potential pharmacological ingredients, providing a basis for future preventive and therapeutic applications of these metabolites.
Collapse
Affiliation(s)
- Xiaomin Cao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Kaixin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hongyan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|
3
|
Yang Z, Man J, Liu Y, Zhang H, Wu D, Shao D, Hao B, Wang S. Study on the Alleviating Effect and Potential Mechanism of Ethanolic Extract of Limonium aureum (L.) Hill. on Lipopolysaccharide-Induced Inflammatory Responses in Macrophages. Int J Mol Sci 2023; 24:16272. [PMID: 38003461 PMCID: PMC10671607 DOI: 10.3390/ijms242216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation is the host response of immune cells during infection and traumatic tissue injury. An uncontrolled inflammatory response leads to inflammatory cascade, which in turn triggers a variety of diseases threatening human and animal health. The use of existing inflammatory therapeutic drugs is constrained by their high cost and susceptibility to systemic side effects, and therefore new therapeutic candidates for inflammatory diseases need to be urgently developed. Natural products are characterized by wide sources and rich pharmacological activities, which are valuable resources for the development of new drugs. This study aimed to uncover the alleviating effect and potential mechanism of natural product Limonium aureum (LAH) on LPS-induced inflammatory responses in macrophages. The experimental results showed that the optimized conditions for LAH ultrasound-assisted extraction via response surface methodology were an ethanol concentration of 72%, a material-to-solvent ratio of 1:37 g/mL, an extraction temperature of 73 °C, and an extraction power of 70 W, and the average extraction rate of LAH total flavonoids was 0.3776%. Then, data of 1666 components in LAH ethanol extracts were obtained through quasi-targeted metabolomics analysis. The ELISA showed that LAH significantly inhibited the production of pro-inflammatory cytokines while promoting the secretion of anti-inflammatory cytokines. Finally, combined with the results of network pharmacology analysis and protein expression validation of hub genes, it was speculated that LAH may alleviate LPS-induced inflammatory responses of macrophages through the AKT1/RELA/PTGS2 signaling pathway and the MAPK3/JUN signaling pathway. This study preliminarily revealed the anti-inflammatory activity of LAH and the molecular mechanism of its anti-inflammatory action, and provided a theoretical basis for the development of LAH as a new natural anti-inflammatory drug.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Jingyuan Man
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Di Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Dan Shao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Z.Y.); (Y.L.); (H.Z.); (D.W.); (D.S.)
| |
Collapse
|
4
|
Truong VL, Bae YJ, Rarison RHG, Bang JH, Park SY, Jeong WS. Anti-Inflammatory and Antioxidant Activities of Lipophilic Fraction from Liriope platyphylla Seeds Using Network Pharmacology, Molecular Docking, and In Vitro Experiments. Int J Mol Sci 2023; 24:14958. [PMID: 37834406 PMCID: PMC10573744 DOI: 10.3390/ijms241914958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Antioxidant and anti-inflammatory mechanisms counteract the pathogenesis of chronic diseases, such as diabetes, aging, and cancer. Therefore, enhancing antioxidant and anti-inflammatory functions may help manage these pathological conditions. This study aimed to assess the antioxidant and anti-inflammatory potentials of lipophilic fraction of Liriope platyphylla seeds (LLPS) using network pharmacology, molecular docking, and in vitro experiments. Here GC-MS analysis tentatively identified forty-three lipophilic compounds in LLPS. LLPS exhibited powerful antioxidant activity, according to the results from chemical-based antioxidant assays on DPPH, ABTS+, superoxide anion, hydrogen peroxide, nitric oxide, and hydroxyl radicals scavenging, lipid peroxidation, reducing antioxidant powers, and total antioxidant capacity. Additionally, LLPS enhanced cellular antioxidant capacity by inhibiting reactive oxygen species formation and elevating antioxidant enzyme levels, including catalase and heme oxygenase-1. Moreover, LLPS attenuated inflammatory response by reducing nitric oxide secretion and downregulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β in lipopolysaccharide-treated macrophages. Network pharmacology and molecular docking analyses showed that key compounds in LPPS, particularly phytosterols and fatty acid esters, exerted antioxidant and anti-inflammatory properties through regulating NFKB1, PTGS1, PTGS2, TLR4, PRKCA, PRKCD, KEAP1, NFE2L2, and NR1l2. Overall, these data suggest that LLPS may be a potential antioxidant and anti-inflammatory agent for developing functional foods.
Collapse
Affiliation(s)
- Van-Long Truong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeon-Ji Bae
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Razanamanana H. G. Rarison
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Ji-Hong Bang
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - So-Yoon Park
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
| | - Woo-Sik Jeong
- School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (V.-L.T.); (Y.-J.B.); (R.H.G.R.); (J.-H.B.); (S.-Y.P.)
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|