1
|
Li P, Wu G. Characteristics of Nutrition and Metabolism in Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:55-98. [PMID: 38625525 DOI: 10.1007/978-3-031-54192-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs and cats have evolved differentially in some aspects of nutrition, metabolism, chemical sensing, and feeding behavior. The dogs have adapted to omnivorous diets containing taurine-abundant meat and starch-rich plant ingredients. By contrast, domestic cats must consume animal-sourced foods for survival, growth, and development. Both dogs and cats synthesize vitamin C and many amino acids (AAs, such as alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine), but have a limited ability to form de novo arginine and vitamin D3. Compared with dogs, cats have greater endogenous nitrogen losses and higher dietary requirements for AAs (particularly arginine, taurine, and tyrosine), B-complex vitamins (niacin, thiamin, folate, and biotin), and choline; exhibit greater rates of gluconeogenesis; are less sensitive to AA imbalances and antagonism; are more capable of concentrating urine through renal reabsorption of water; and cannot tolerate high levels of dietary starch due to limited pancreatic α-amylase activity. In addition, dogs can form sufficient taurine from cysteine (for most breeds); arachidonic acid from linoleic acid; eicosapentaenoic acid and docosahexaenoic acid from α-linolenic acid; all-trans-retinol from β-carotene; and niacin from tryptophan. These synthetic pathways, however, are either absent or limited in all cats due to (a) no or low activities of key enzymes (including pyrroline-5-carboxylate synthase, cysteine dioxygenase, ∆6-desaturase, β-carotene dioxygenase, and quinolinate phosphoribosyltransferase) and (b) diversion of intermediates to other metabolic pathways. Dogs can thrive on one large meal daily, select high-fat over low-fat diets, and consume sweet substances. By contrast, cats eat more frequently during light and dark periods, select high-protein over low-protein diets, refuse dry food, enjoy a consistent diet, and cannot taste sweetness. This knowledge guides the feeding and care of dogs and cats, as well as the manufacturing of their foods. As abundant sources of essential nutrients, animal-derived foodstuffs play important roles in optimizing the growth, development, and health of the companion animals.
Collapse
Affiliation(s)
- Peng Li
- North American Renderers Association, Alexandria, VA, 22314, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Miller A, Cutroneo G, Lombardo GP, D'Angelo R, Pallio S, Migliorato A, Fumia A, Favaloro A, Lauriano ER, Pergolizzi S. Association between neuropeptides and mucins in Crohn's disease mucous cells. Acta Histochem 2023; 125:152115. [PMID: 37979446 DOI: 10.1016/j.acthis.2023.152115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are both inflammatory bowel diseases (IBD). Unlike UC, which is limited to the mucosa of the colon, CD inflammation is characterized by chronic mucosal ulcerations affecting the entire gastrointestinal tract. Goblet cells (GCs) can be found in some lining epithelia, particularly in the respiratory and digestive tracts. GCs represent the main source of mucin that are the significant components of the mucus layer; hypertrophy of GCs and an increase in mucin production are observed in many enteric infections. The cytoplasm of goblet cells may also contain neuropeptides, such as serotonin, that can be altered in inflammatory bowel disease (IBD). The defense system of the gut is represented by the intestinal mucosal barrier, its protective function is strictly connected to the regulation of the mucus layer and the coordination of the neuro-immune response. Paraformaldehyde-fixed intestinal tissues, obtained from fifteen patients with Crohn's disease, were analyzed by immunostaining for MUC2, MUC4, 5-HT, and VAChT. This study aims to define the link between neuropeptides and mucins in mucous cells and their involvement in the inflammation process. Our results showed in mucous cells of Crohn's disease (CD) patients a high expression of MUC4 and a decrease in the expression of vesicular acetylcholine transporter (VAChT) demonstrating the presence of an inflammatory state.
Collapse
Affiliation(s)
- Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Giuseppina Cutroneo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy
| | - Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Socrate Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy
| | - Alba Migliorato
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy.
| | - Angelo Favaloro
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
3
|
Layunta E, Latorre E, Grasa L, Arruebo MP, Buey B, Alcalde AI, Mesonero JE. Intestinal serotonergic system is modulated by Toll-like receptor 9. J Physiol Biochem 2022; 78:689-701. [PMID: 35670957 PMCID: PMC9381617 DOI: 10.1007/s13105-022-00897-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/14/2022] [Indexed: 12/03/2022]
Abstract
Intestinal serotonergic system is a key modulator of intestinal homeostasis; however, its regulation is still unclear. Toll-like receptor 9 (TLR9), an innate immune receptor, detects different external agents in the intestine, preserving intestinal integrity. Since little is known about TLR9 role in the intestine, our aim was to address the potential regulation between TLR9 and intestinal serotonergic system. Caco-2/TC7 cell line and intestinal tract of Tlr9−/− mice were used in this study. Serotonin uptake studies were performed, and molecular expression of different serotonergic components was analyzed by western blot and real-time PCR. Our results show that TLR9 activation inhibits serotonin transporter activity and expression, involving p38/MAPK and ERK/MAPK intracellular pathways, and reciprocally, serotonin increases TLR9 expression. Supporting this interaction, serotonin transporter, serotonin receptors and serotonin producer enzymes were found altered in intestinal tract of Tlr9−/− mice. We conclude that TLR9 could contribute to intestinal homeostasis by modulation of intestinal serotonergic system.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain. .,Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain. .,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Laura Grasa
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María Pilar Arruebo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana I Alcalde
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - José E Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón - IA2- (Universidad de Zaragoza - CITA), Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
Pergolizzi S, Alesci A, Centofanti A, Aragona M, Pallio S, Magaudda L, Cutroneo G, Lauriano ER. Role of Serotonin in the Maintenance of Inflammatory State in Crohn’s Disease. Biomedicines 2022; 10:biomedicines10040765. [PMID: 35453516 PMCID: PMC9030789 DOI: 10.3390/biomedicines10040765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Crohn’s disease (CD) is a chronic intestinal inflammation considered to be a major entity of inflammatory bowel diseases (IBDs), affecting different segments of the whole gastrointestinal tract. Peripheral serotonin (5-HT), a bioactive amine predominantly produced by gut enterochromaffin cells (ECs), is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. These actions are mediated by a large family of serotonin receptors and specialized serotonin transporter (SERT) located on a variety of cell types in the gut. Several studies indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. Paraformaldehyde-fixed intestinal tissues, obtained from fifteen patients with Crohn’s disease were analyzed by immunostaining for serotonin, Langerin/CD207, and alpha-Smooth Muscle Actin (α-SMA). As controls, unaffected (normal) intestinal specimens of seven individuals were investigated. This study aimed to show the expression of serotonin in dendritic cells (DCs) and myofibroblast which have been characterized with Langerin/CD207 and α-SMA, respectively; furthermore, for the first time, we have found the presence of serotonin in goblet cells. Our results show the correlation between different types of intestinal cells in the maintenance of the inflammatory state in CD linked to the recall of myofibroblasts.
Collapse
Affiliation(s)
- Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Antonio Centofanti
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
- Correspondence: (S.P.); (A.A.); (A.C.)
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Socrate Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98147 Messina, Italy;
| | - Ludovico Magaudda
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
| | - Giuseppina Cutroneo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, 98125 Messina, Italy; (L.M.); (G.C.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| |
Collapse
|