1
|
Khan MZ, Li L, Zhan Y, Binjiang H, Liu X, Kou X, Khan A, Qadeer A, Ullah Q, Alzahrani KJ, Wang T, Wang C, Zahoor M. Targeting Nrf2/KEAP1 signaling pathway using bioactive compounds to combat mastitis. Front Immunol 2025; 16:1425901. [PMID: 39991157 PMCID: PMC11842335 DOI: 10.3389/fimmu.2025.1425901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Mastitis is a common inflammation of mammary glands that has a significantly impact on dairy production and animal health, causing considerable economic burdens worldwide. Elevated reactive oxygen species (ROS) followed by oxidative stress, apoptosis, inflammatory changes and suppressed immunity are considered the key biomarkers observed during mastitis. The Nrf2/KEAP1 signaling pathway plays a critical role in regulating antioxidant responses and cellular defense mechanisms. When activated by bioactive compound treatment, Nrf2 translocates to the nucleus and induces the expression of its target genes to exert antioxidant responses. This reduces pathogen-induced oxidative stress and inflammation by inhibiting NF-kB signaling in the mammary glands, one of the prominent pro-inflammatory signaling pathway. Here, we summarize recent studies to highlight the therapeutic potential of Nrf2/KEAP1 pathway in the prevention and treatment of mastitis. Collectively this review article aims to explore the potential of bioactive compounds in mitigating mastitis by targeting the Nrf2/KEAP1 signaling pathway.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huang Binjiang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Qudrat Ullah
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Saleh MS, Landi V, Derks MFL, Centoducati G, Groenen MAM, De Palo P, Ciani E, Pugliese N, Circella E, Camarda A. Genomic scans for selection and runs of homozygosity in southern Italian turkey populations. Poult Sci 2025; 104:104750. [PMID: 39827693 PMCID: PMC11787592 DOI: 10.1016/j.psj.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Basilicata and Apulian (BAS-APU) turkeys, a native population in the Basilicata and Puglia regions of southern Italy, are known for their high meat quality and tolerance to local conditions. Understanding the genomic patterns of BAS-APU turkeys is critical for effective breeding and preservation strategies. In this study, we characterized runs of homozygosity (ROH), and selection signatures using the integrated haplotype score (iHS) and ROH approaches. A total of 73 BAS-APU turkeys from five populations were sequenced (12X). The inbreeding coefficients based on ROH ranged from 0.177 to 0.405. A total of 120,956 ROH were detected in BAS-APU populations. We identified 27 genomic regions that harbor 61 candidate genes in ROH islands in which single nucleotide polymorphisms (SNPs) occur in more than 90 % of individuals. In addition, we detected 608 genomic regions under positive selection using the iHS method being 104, 98, 130, 102, and 174 for BAS, APU_C, APU_M, APU_PN, and APU_PS, respectively. For both methods, most of the genes within these regions are related to production performance, reproduction, immune responses, and adaptation. This study contributes significantly to our understanding of the genetic makeup of native turkey populations in southern Italy. The identified genes under selection can aid future breeding and conservations programs for southern Italian native turkeys. The results of inbreeding levels, especially in the absence of complete pedigrees or when only a few samples are available, which is often the case for local breeds, will help to avoid genetic relatedness in the mating plan in breeding and conservation plans for BAS-APU populations. Also, the detected genes in the selective sweep regions could be used as a marker-assisted selection to improve productive traits and adaptation of BAS-APU local populations.
Collapse
Affiliation(s)
- Medhat S Saleh
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy; Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands; Department of Animal Production, Faculty of Agriculture, Benha University, Benha 13736, Egypt.
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Gerardo Centoducati
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, Wageningen, 6700 AH, the Netherlands.
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy.
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy.
| |
Collapse
|
3
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
4
|
Muslimova Z, Abdualiyeva A, Shaugimbayeva N, Orynkhanov K, Ussenbekov Y. Genotyping of Holstein Cows by SELL, MX1 and CXCR1 Gene Loci Associated With Mastitis Resistance. Reprod Domest Anim 2024; 59:e14713. [PMID: 39171501 DOI: 10.1111/rda.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Mastitis is a significant factor that decreases milk production in cows of different breeds in Kazakhstan. The objective of this study was to determine the genetic makeup of Holstein cows by analysing specific gene loci (SELL, MX1, CXCR1+291C>T and CXCR1+1093C>T) that are linked to resistance against mastitis. The goal was to identify cows with favourable genotypes that are less prone to udder diseases. At the SELL gene locus c.567T>C, all three genetic variants were identified in the control population with the respective frequencies: TT (0.20), CT (0.44), and CC (0.36). Genetic variation was also detected at the MX1 gene c.567T>C, CXCR1 c.+291C>T and CXCR1+1093C>T loci. Deviation from the expected Hardy-Weinberg equilibrium was observed for two gene loci, MX1 g.143182088 and CXCR1+1093C>T, with increased chi-square values of 10.6261 and 9.7137, respectively. The analysis of subclinical mastitis incidence indicates that cows carrying the heterozygous CT genotype at the L-selectin gene locus exhibit greater resistance to the disease. Animals carrying the CCCCCT genotype at the MX1 c.567T>C, CXCR1 c.+291C>T and CXCR1+1093C>T gene loci were discovered to have a significant likelihood of developing subclinical mastitis. This suggests that these genes could serve as potential indicators of susceptibility to the condition. The practical significance of this study lies in determining the frequency of genotypes linked to mammary gland morbidity in Holstein breeding farms in Kazakhstan.
Collapse
Affiliation(s)
- Zhadyra Muslimova
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Assem Abdualiyeva
- Department of Biological Safety, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Nurzhan Shaugimbayeva
- Department of Food Technology, Almaty Technological University, Almaty, Republic of Kazakhstan
| | - Kanat Orynkhanov
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| | - Yessengali Ussenbekov
- Department of Obstetrics, Surgery and Reproductive Biotechnology, Kazakh National Agrarian Research University, Almaty, Republic of Kazakhstan
| |
Collapse
|
5
|
Wang D, Ma S, Yan M, Dong M, Zhang M, Zhang T, Zhang T, Zhang X, Xu L, Huang X. DNA methylation patterns in the peripheral blood of Xinjiang brown cattle with variable somatic cell counts. Front Genet 2024; 15:1405478. [PMID: 39045327 PMCID: PMC11263093 DOI: 10.3389/fgene.2024.1405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
The use of wide-ranging dairy herd improvement (DHI) measurements has resulted in the investigation of somatic cell count (SCC) and the identification of many genes associated with mastitis resistance. In this study, blood samples of Xinjiang brown cattle with different SCCs were collected, and genome-wide DNA methylation was analyzed by MeDIP-seq. The results showed that peaks were mostly in intergenic regions, followed by introns, exons, and promoters. A total of 1,934 differentially expressed genes (DEGs) associated with mastitis resistance in Xinjiang brown cattle were identified. The enrichment of differentially methylated CpG islands of the TRAPPC9 and CD4 genes was analyzed by bisulfate genome sequencing. The methylation rate of differentially methylated CpGs was higher in the TRAPPC9 gene of cattle with clinical mastitis (mastitis group) compared with healthy cattle (control group), while methylation of differentially methylated CpGs was significantly lower in CD4 of the mastitis group compared with the control group. RT-qRCR analysis showed that the mastitis group had significantly reduced expression of CD4 and TRAPPC9 genes compared to the control group (p < 0.05). Furthermore, Mac-T cells treated with lipopolysaccharide and lipoteichoic acid showed significant downregulation of the TRAPPC9 gene in the mastitis group compared with the control group. The identified epigenetic biomarkers provide theoretical reference for treating cow mastitis, breeding management, and the genetic improvement of mastitis resistance in Xinjiang brown cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Feng F, Yang G, Ma X, Zhang J, Huang C, Ma X, La Y, Yan P, Zhandui P, Liang C. Polymorphisms within the PRKG1 Gene of Gannan Yaks and Their Association with Milk Quality Characteristics. Foods 2024; 13:1913. [PMID: 38928854 PMCID: PMC11203268 DOI: 10.3390/foods13121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Yak milk, known as the "liquid gold", is a nutritious food with extensive consumption. Compared with cow milk, yak milk contains higher levels of nutrients such as dry matter, milk fat, and milk protein, which demonstrates great potential for exploitation and utilization. Protein kinase cGMP-dependent 1 (PRKG1) is an important functional molecule in the cGMP signaling pathway, and its significant influence on milk fatty acids has been discovered. The aim of this study is to explore the correlation between single nucleotide polymorphisms (SNPs) in the PRKG1 gene and the quality traits of Gannan yak milk in order to identify candidate molecular markers for Gannan yak breeding. In this study, genotyping was performed on 172 healthy, 4-5-year-old lactating Gannan yaks with similar body types, naturally grazed, and two to three parity. Three SNPs (g.404195C>T, g.404213C>T, and g.760138T>C) were detected in the PRKG1 gene of Gannan yaks, which were uniformly distributed in the yak population. Linkage disequilibrium analysis was conducted, revealing complete linkage disequilibrium between g.404195C>T and g.404213C>T. After conducting a correlation analysis between SNPs in the PRKG1 gene and milk quality in Gannan yaks, we found that PRKG1 SNPs significantly increased the content of casein, protein, and SNFs in yak milk. Among them, the TT homozygous genotype at the PRKG1 g.404195C>T loci exhibited higher casein and protein contents compared to the CC and CT genotypes (p < 0.05). The SNP g.760138T>C locus was associated with casein, protein, SNFs, and TS traits (p < 0.05). The CC genotype had higher casein and protein contents than the TT and TA genotypes (p < 0.05). However, there were no significant differences in milk fat, lactose, and acidity among the three genotypes (p > 0.05). In summary, PRKG1 gene polymorphism can serve as a candidate molecular marker for improving milk quality in Gannan yaks.
Collapse
Affiliation(s)
- Fen Feng
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Guowu Yang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pingcuo Zhandui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lasa 850004, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (F.F.); (G.Y.); (X.M.); (J.Z.); (C.H.); (X.M.); (Y.L.); (P.Y.)
- Plateau Agricultural Science and Technology Innovation Center, Lasa 850004, China
| |
Collapse
|
7
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Khan IM, Khan A, Liu H, Khan MZ. Editorial: Genetic markers identification for animal production and disease resistance. Front Genet 2023; 14:1243793. [PMID: 37501722 PMCID: PMC10369344 DOI: 10.3389/fgene.2023.1243793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| |
Collapse
|
9
|
Khan MZ, Wang J, Ma Y, Chen T, Ma M, Ullah Q, Khan IM, Khan A, Cao Z, Liu S. Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility. Front Immunol 2023; 14:1082144. [PMID: 36911690 PMCID: PMC9997099 DOI: 10.3389/fimmu.2023.1082144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bovine mastitis, the inflammation of the mammary gland, is a contagious disease characterized by chemical and physical changes in milk and pathological changes in udder tissues. Depressed immunity and higher expression of inflammatory cytokines with an elevated milk somatic cell count can be observed during mastitis in dairy cattle. The use of somatic cell count (SCC) and somatic cell score (SCS) as correlated traits in the indirect selection of animals against mastitis resistance is in progress globally. Traditional breeding for mastitis resistance seems difficult because of the low heritability (0.10-0.16) of SCC/SCS and clinical mastitis. Thus, genetic-marker-selective breeding to improve host genetics has attracted considerable attention worldwide. Moreover, genomic selection has been found to be an effective and fast method of screening for dairy cattle that are genetically resistant and susceptible to mastitis at a very early age. The current review discusses and summarizes the candidate gene approach using polymorphisms in immune- and inflammation-linked genes (CD4, CD14, CD46, TRAPPC9, JAK2, Tf, Lf, TLRs, CXCL8, CXCR1, CXCR2, C4A, C5, MASP2, MBL1, MBL2, LBP, NCF1, NCF4, MASP2, A2M, and CLU, etc.) and their related signaling pathways (Staphylococcus aureus infection signaling, Toll-like receptor signaling, NF-kappa B signaling pathway, Cytokine-cytokine receptor, and Complement and coagulation cascades, etc.) associated with mastitis resistance and susceptibility phenotypic traits (IL-6, interferon-gamma (IFN-γ), IL17, IL8, SCS, and SCC) in dairy cattle.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|