1
|
Olivares RWI, Bass LG, Sáenz-Bräutigam A, Sandí-Carmiol J, Villada-Rosales AM, Dolz G, Solórzano-Morales A, Zúniga-Moya MJ, Granados-Solano R, McHale B, Zúñiga-Cortés DS, Uzal FA. Psittacine beak and feather disease in 2 free-living great green macaws: a case report and literature review. J Vet Diagn Invest 2025:10406387251333410. [PMID: 40237412 PMCID: PMC12003325 DOI: 10.1177/10406387251333410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Psittacine beak and feather disease (PBFD) is caused by the psittacine beak and feather disease virus (PBFDV; Circoviridae, Circovirus parrot). This disease affects mainly young captive birds, inducing lesions mainly in the skin adnexa and lymphoid organs. Here we report PBFD in 2 free-living great green macaws (Ara ambiguus). The birds were depressed and had lost feathers and body condition. The diagnosis was confirmed by gross lesions and PCR testing in one bird, and by gross and microscopic lesions, PCR testing, viral sequencing, and in situ hybridization in the other bird. Gross lesions in both birds included mild beak discoloration and feather loss. Microscopic lesions in the bird whose tissues were examined histologically included bronchopneumonia and severe lymphoid depletion with intracytoplasmic and intranuclear botryoid inclusion bodies in the cloacal bursa. Sequences of the viral DNA obtained from paraffin-embedded cloacal bursa tissue had 100% nucleotide and 100% amino acid identity with several strains of PBFDV isolated from captive birds in multiple countries. To our knowledge, PBFD has not been reported previously in free-living great green macaws.
Collapse
Affiliation(s)
- Roberto W. I. Olivares
- Servicio de Patología Diagnóstica LAPAVET-ESFA, Cátedra de Patología e Histología, Escuela de Medicina y Cirugía Veterinaria San Francisco de Asís, Universidad Veritas, Vázquez de Coronado, San José, Costa Rica
| | - Laura G. Bass
- Cátedra de Microbiología e Inmunología, Escuela de Medicina y Cirugía Veterinaria San Francisco de Asís, Universidad Veritas, Vázquez de Coronado, San José, Costa Rica
- Maestría en Enfermedades Tropicales, Posgrado Regional en Ciencias Veterinarias Tropicales (PCVET), Universidad Nacional (UNA), Heredia, Costa Rica
| | | | | | | | - Gaby Dolz
- Laboratorio de Zoonosis y Entomología, Escuela de Medicina Veterinaria, Universidad Nacional (UNA), Heredia, Costa Rica
| | - Antony Solórzano-Morales
- Laboratorio de Zoonosis y Entomología, Escuela de Medicina Veterinaria, Universidad Nacional (UNA), Heredia, Costa Rica
| | - María J. Zúniga-Moya
- Laboratorio de Zoonosis y Entomología, Escuela de Medicina Veterinaria, Universidad Nacional (UNA), Heredia, Costa Rica
| | - Roxana Granados-Solano
- Maestría en Enfermedades Tropicales, Posgrado Regional en Ciencias Veterinarias Tropicales (PCVET), Universidad Nacional (UNA), Heredia, Costa Rica
| | - Brittany McHale
- Infectious Diseases Laboratory, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| | - Diego S. Zúñiga-Cortés
- Servicio de Patología Diagnóstica LAPAVET-ESFA, Cátedra de Patología e Histología, Escuela de Medicina y Cirugía Veterinaria San Francisco de Asís, Universidad Veritas, Vázquez de Coronado, San José, Costa Rica
| | - Francisco A. Uzal
- California Animal Health & Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| |
Collapse
|
2
|
Ko JCK, Choi YWY, Poon ESK, Wyre N, Sin SYW. Prevalence, genotypes, and infection risk factors of psittacine beak and feather disease virus and budgerigar fledgling disease virus in captive birds in Hong Kong. Arch Virol 2024; 169:91. [PMID: 38578455 PMCID: PMC10997714 DOI: 10.1007/s00705-024-06017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
Psittacine beak and feather disease virus (PBFDV) and budgerigar fledgling disease virus (BFDV) are significant avian pathogens that threaten both captive and wild birds, particularly parrots, which are common hosts. This study involved sampling and testing of 516 captive birds from households, pet shops, and an animal clinic in Hong Kong for PBFDV and BFDV. The results showed that PBFDV and BFDV were present in 7.17% and 0.58% of the samples, respectively. These rates were lower than those reported in most parts of Asia. Notably, the infection rates of PBFDV in pet shops were significantly higher compared to other sources, while no BFDV-positive samples were found in pet shops. Most of the positive samples came from parrots, but PBFDV was also detected in two non-parrot species, including Swinhoe's white-eyes (Zosterops simplex), which had not been reported previously. The ability of PBFDV to infect both psittacine and passerine birds is concerning, especially in densely populated urban areas such as Hong Kong, where captive flocks come into close contact with wildlife. Phylogenetic analysis of the Cap and Rep genes of PBFDV revealed that the strains found in Hong Kong were closely related to those in Europe and other parts of Asia, including mainland China, Thailand, Taiwan, and Saudi Arabia. These findings indicate the presence of both viruses among captive birds in Hong Kong. We recommend implementing regular surveillance for both viruses and adopting measures to prevent contact between captive and wild birds, thereby reducing the transmission of introduced diseases to native species.
Collapse
Affiliation(s)
- Jackie Cheuk Kei Ko
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Yannes Wai Yan Choi
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China
| | - Nicole Wyre
- Zodiac Pet & Exotic Hospital, 101A-103A Victoria Centre, 15 Watson Road, Fortress Hill, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China.
| |
Collapse
|
3
|
Pivirotto AM, Platt A, Patel R, Kumar S, Hey J. Analyses of allele age and fitness impact reveal human beneficial alleles to be older than neutral controls. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561569. [PMID: 37873438 PMCID: PMC10592680 DOI: 10.1101/2023.10.09.561569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A classic population genetic prediction is that alleles experiencing directional selection should swiftly traverse allele frequency space, leaving detectable reductions in genetic variation in linked regions. However, despite this expectation, identifying clear footprints of beneficial allele passage has proven to be surprisingly challenging. We addressed the basic premise underlying this expectation by estimating the ages of large numbers of beneficial and deleterious alleles in a human population genomic data set. Deleterious alleles were found to be young, on average, given their allele frequency. However, beneficial alleles were older on average than non-coding, non-regulatory alleles of the same frequency. This finding is not consistent with directional selection and instead indicates some type of balancing selection. Among derived beneficial alleles, those fixed in the population show higher local recombination rates than those still segregating, consistent with a model in which new beneficial alleles experience an initial period of balancing selection due to linkage disequilibrium with deleterious recessive alleles. Alleles that ultimately fix following a period of balancing selection will leave a modest 'soft' sweep impact on the local variation, consistent with the overall paucity of species-wide 'hard' sweeps in human genomes.
Collapse
Affiliation(s)
| | - Alexander Platt
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- University of Pennsylvania, Department of Genetics, Philadelphia PA 19104, USA
| | - Ravi Patel
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Sudhir Kumar
- Temple University, Department of Biology, Philadelphia PA 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, PA 19122, USA
| | - Jody Hey
- Temple University, Department of Biology, Philadelphia PA 19122, USA
| |
Collapse
|
4
|
Shah PT, Wang J, Liu Y, Hussain B, Ma ZH, Wu C, Xing L. The phylogenetic and phylogeographic landscape of the beak and feather disease virus, 1996-2022. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105442. [PMID: 37179036 DOI: 10.1016/j.meegid.2023.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The beak and feather disease virus (BFDV), causative agent of Psittacine beak and feather disease (PBFD), is a highly fatal and widespread virus that infects both the wild and captive Psittaciformes around the world. The BFDV genome is a ssDNA of approximately 2 kb in size, making it among the smallest known pathogenic viruses. Though, the virus is placed in Circoviridae family of the Circovirus genus, there is no classification system on clade and sub-clade level according to the International Committee on Taxonomy of Viruses and the strains are grouped on the bases of geographic locations. Thus, we provide the latest and robust phylogenetic classification of BFDVs in this study based on full-length genomic sequences, grouping all the available 454 strains detected during 1996-2022 into two distinct clades, e.g., GI and GII. The GI clade is further divided into six sub-clades (GI a-f), while GII into two sub-clades (GII a and b). In addition, the phylogeographic network identified high variability among the BFDV strains, showing several branches, where all the branches are connected to four strains, e.g., BFDV-ZA-PGM-70A(GenBank ID: HM748921.1, 2008-South Africa), BFDV-ZA-PGM-81A(GenBank ID: JX221009.1, 2008-South Africa), BFDV14(GenBank ID: GU015021.1, 2010-Thailand) and BFDV-isolate-9IT11(GenBank ID: KF723390.1, 2014-Italy). Furthermore, we identified 27 recombination events in the rep (replication-associated protein) and cap (capsid protein) coding regions using the complete genomes of BFDVs. Similarly, the amino acids variability analysis indicated that both the rep and cap regions are highly variable with values exceeding the variability coefficient estimation limit of 1.00, speculating the possible amino acids drift with the emergence of new strains. The findings provided in this study may offer the latest phylogenetic, phylogeographic and evolutionary landscape of the BFDVs.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Jing Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Yue Liu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China.
| | - Behzad Hussain
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Zi-Hui Ma
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|