1
|
Younas S, Bukhari DA, Bibi Z, Ullah A, Rehman A. Impact of multistrain probiotics on growth performance, immune response, and gut morphometry in broiler chicken Gallus gallus domesticus. Poult Sci 2025; 104:105026. [PMID: 40101512 PMCID: PMC11960641 DOI: 10.1016/j.psj.2025.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
The objective of this investigation was to examine the impact of four lab-isolated probiotics Enterococcus faecium (OR563785.1), Weissella confusa (OR563786.1), Weissella cibaria (OQ543569.1), Lactiplantibacillus plantarum (OQ689085.1) in 1:1:1:1 of CFU dilution as multistrain probiotics (MSP) regarding growth performance, haemato-biochemical indices and immune function in broilers. Ninety uniformly weighed broilers were divided into five groups at random with (n = 18/group). NC: negative control (basal diet); PC: commercial probiotic, G1: MSP supplemented, G2: MSP + vaccinated, G3: (vaccinated). Blood samples were collected at 42 days of age to assess immunological, haemato-biochemical parameters, and intestinal morphometry. Compared to the group of negative control, the broiler chicks' body weight was considerably (p < 0.05) higher in MSP-treated groups (G1, G2). This study found that, as compared to the NC, there was a substantial rise (p < 0.05) in RBC and hemoglobin in the probiotic-supplemented bird group. The results indicated that cholesterol and triglyceride remarkably decreased compared to control in probiotic-treated groups. There was no discernible change in the enzyme activity of ALT, AST, and ALP across the groups (p > 0.05). The findings indicated higher levels of immunoglobulin and interleukins in the MSP group than in the control (NC). The villus's height to crypt depth ratio was higher in the MSP groups (G1, G2) in contrast with the PC group (p < 0.05). The haemagglutination inhibition test (HI) revealed that the probiotic-treated groups had greater New Castle disease virus (NDV) antibodies than the other groups. The humoral response to live NDV vaccinations may be enhanced by multistrain probiotics. These results revealed MSP significantly affected growth performance, haematobiochemical parameters, and immunity through alteration in intestinal morphology which helps in nutrient uptake.
Collapse
Affiliation(s)
- Samina Younas
- Institute of Zoology, Government College University, Lahore, Pakistan
| | | | - Zuhra Bibi
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Arif Ullah
- Institute of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Pangga GM, Star-Shirko B, Psifidi A, Xia D, Corcionivoschi N, Kelly C, Hughes C, Lavery U, Richmond A, Ijaz UZ, Gundogdu O. Impact of commercial gut health interventions on caecal metagenome and broiler performance. MICROBIOME 2025; 13:30. [PMID: 39881387 PMCID: PMC11776324 DOI: 10.1186/s40168-024-02012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use. RESULTS Using a binning strategy, 84 (≥ 75% completeness, ≤ 5% contamination) metagenome-assembled genomes (MAGs) from 118 caecal samples were recovered and annotated for their metabolic potential. The majority of these (n = 52, 61%) had a differential response across all cohorts and are associated with the performance parameter - European poultry efficiency factor (EPEF). The control group exhibited the highest EPEF, followed closely by the cohort where probiotics are used in conjunction with vaccination. The use of probiotics B, a commercial Bacillus strain-based formulation, was determined to contribute to the superior performance of birds. GHI supplementation generally affected the abundance of microbial enzymes relating to carbohydrate and protein digestion and metabolic pathways relating to energy, nucleotide synthesis, short-chain fatty acid synthesis, and drug-transport systems. These shifts are hypothesised to differentiate performance among groups and cycles, highlighting the beneficial role of several bacteria, including Rikenella microfusus and UBA7160 species. CONCLUSIONS All GHIs are shown to be effective methods for gut microbial modulation, with varying influences on MAG diversity, composition, and microbial functions. These metagenomic insights greatly enhance our understanding of microbiota-related metabolic pathways, enabling us to devise strategies against enteric pathogens related to poultry products and presenting new opportunities to improve overall poultry performance and health. Video Abstract.
Collapse
Affiliation(s)
- Gladys Maria Pangga
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Banaz Star-Shirko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Dong Xia
- Royal Veterinary College, London, UK
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Agri-Food and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai Timișoara, Timișoara, Romania
| | - Carmel Kelly
- Bacteriology Branch, Agri-Food and Biosciences Institute, Veterinary Sciences Division, Belfast, UK
| | | | | | | | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Wu Y, Yue S, Yu J, Bian F, Chen G, Zhang Y. Probiotic Characterization of Lactic Acid Bacteria from Donkey Feces in China. Animals (Basel) 2025; 15:207. [PMID: 39858207 PMCID: PMC11758317 DOI: 10.3390/ani15020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Probiotics are beneficial to humans and animals and often used for regulating immunity, intestinal microbiota balance, and animal growth performance. Donkey husbandry has boomed in China in recent years and there is an urgent need for probiotics effective for improving donkey health. However, studies on potential probiotic strains isolated from donkeys are scarce. This project aimed to screen LAB strains from donkey feces, detect their antimicrobial activity and evaluate their probiotic characteristics in vitro. Thirteen LAB isolates showed different degrees of antimicrobial activity against four indicator bacteria: three common pathogens (Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium) and one pathogen restricted to equines (Salmonella. abortus equi), eight of which could inhibit all four pathogens. Seven isolates showed higher tolerance to low pH and bile salts, with >50% and >60% survival rates, respectively. Five of them had more than 50% survival rate to artificial gastric and intestinal fluids. Only three isolates possessed good properties, with >40% auto-aggregation, >40% hydrophobicity, and high co-aggregation with the indicator pathogens. An L9 isolate, identified as Ligilactobacillus salivarius, was sensitive to most antibiotics tested. Overall, these results indicate that the L. salivarius L9 isolate meets the requirements of the probiotics selection criteria in vitro and can potentially be developed as a probiotic for donkeys.
Collapse
Affiliation(s)
- Yanqiu Wu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Shousong Yue
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Jinhui Yu
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Fei Bian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| | - Yan Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Jinan Engineering Research Center of Conservation of Agricultural Microbial Resources and Biomanufacturing, Jinan 250100, China
- Jinan Key Laboratory of Conservation and Utilization of Agricultural Microbial Resources, Jinan 250100, China
| |
Collapse
|
4
|
Zhao Z, Liswaniso S, Qin N, Cao S, Wu X, Ma C, Yan C, Xu R, Sun X. Effects of a novel synbiotics-enzyme complex as a replacement for antibiotics on growth performance, slaughter and meat characteristics, immune organ index, and intestinal morphology of broilers. Front Vet Sci 2024; 11:1468847. [PMID: 39484028 PMCID: PMC11524961 DOI: 10.3389/fvets.2024.1468847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Antibiotic use in broilers is being discouraged globally due to the challenges it poses. This study was conducted to assess the effects of supplementing broilers with a Symbiotic-Enzyme complex (SEC) containing prebiotics (mannose oligosaccharides), probiotics (Clostridium butyricum and Bacillus subtilis), and enzymes (glucose oxidase, and α-galactosidase) as an alternative to antibiotics on growth performance, carcass and meat quality traits, mortality, linear body measurements, intestinal morphology and immune organ indexes. Method A total of 864 mixed-sex 1-day-old arbor acres (AA+) broilers were allocated to 8 experimental groups replicated 9 times with 12 chickens per replicate. These included 6 treatment groups with SEC inclusion levels of 0.025, 0.04, 0.05, 0.06, 0.08, and 0.10%, respectively, and two control groups: a negative control group containing a basal diet only and the positive control group (Antibiotics group) containing a basal diet and antibiotic oxytetracycline added at 0.2%. Growth performance was measured on day 21 and 42, and the mortality, carcass, meat quality traits, linear body measurements, intestinal morphology, and organ size indexes were measured on day 42. Results The results indicated that supplementing broilers with 0.1% SEC resulted in insignificant (P > 0.05) increases in average daily feed intake (ADFI), significant (P < 0.05) increases in the average daily gains (ADG), and significant (P < 0.05) reduction in a feed-to-gain ratio (F/G) in all the phases compared to the control and antibiotics groups. Supplementation of broilers with 0.1% SEC inclusion levels also significantly (P < 0.05) increased the body slope length, chest width, chest depth, keel length, and shank circumference. Furthermore, broilers on diets containing 0.1% SEC inclusion level also had significantly (P < 0.05) higher dressed, semi-evisceration, evisceration, and breast muscle percentages. Including SEC at 0.1% also significantly (P < 0.05) increased villus height and villus-to-crypt ratio (V/C) but reduced crypt depth in the duodenum, jejunum, and ileum compared to the control groups. SEC inclusion at 0.1% significantly (P < 0.05) increased the spleen, bursal, and thymus indexes, respectively. Conclusion Supplementation of broilers with 0.1% SEC can be used as an antibiotic alternative because it increases the F/G, improves the carcass and meat quality, increases the body conformation, improves the small intestines' functions, and immune organ size.
Collapse
Affiliation(s)
- Zihao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Simushi Liswaniso
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ning Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shengxiao Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chang Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunchi Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rifu Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xue Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Nath SK, Hossain MT, Ferdous M, Siddika MA, Hossain A, Maruf AA, Chowdhory AT, Nath TC. Effects of antibiotic, acidifier, and probiotic supplementation on mortality rates, lipoprotein profile, and carcass traits of broiler chickens. Vet Anim Sci 2023; 22:100325. [PMID: 38058382 PMCID: PMC10696248 DOI: 10.1016/j.vas.2023.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Antimicrobial resistance is a significant issue, therefore it's relevant to assess the effects of antibiotics, acidifiers, and probiotic supplementation finding a good alternative to reduce the use of antibiotics in broiler production in rural areas of Bangladesh. Using randomized control trial, this 28-day study evaluated 360 Hubbard Classic broiler chicks divided into four groups: oxytetracycline-treated, acidifier-treated, Lactobacillus-based probiotic-treated, and control (no antibiotics, acidifiers, or probiotics). Each group was replicated three times with 30 birds each with adlibitum feeding. Body weight and feed intake were recorded weekly, and on 28th day, carcass traits and blood lipoprotein levels were evaluated. Results showed that in first and fourth weeks, the body weight gain significantly varied in probiotics and acidifier-treated birds than the control group (P < 0.001). The probiotic group had gained considerable increase in body weight (185.0 g vs 161.7 g and 1745.0 g vs 1592.7 g) than the control group. Notably, in the first week, the feed conversion ratio for the probiotic group was 0.76, but the antibiotic group's was 0.96 (P < 0.001). The weights of the drumstick (88.33 g) and liver (61.0 g) having probiotic supplements were substantially higher than those in the control group (77.0 g and 51.33 g, respectively) (P < 0.001). According to serum lipoprotein analysis, the probiotic and acidifier groups exhibited lower LDL levels (71.1 mg/dl and 69.8 mg/dl, respectively) and higher triglyceride levels (122.9 mg/dl and 135.4 mg/dl). These findings highlight the potential of probiotics and acidifiers as effective antibiotic alternatives, promoting carcass traits and lowering LDL levels in broilers in Bangladesh.
Collapse
Affiliation(s)
- Sabuj Kanti Nath
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Md Taslim Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mahfuza Ferdous
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mst. Assrafi Siddika
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amir Hossain
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amim Al Maruf
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Ahanaf Tahmid Chowdhory
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Tilak Chandra Nath
- Department of Parasitology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|