1
|
Hafezi A, Beglari S, Aghamohammad S, Rohani M. Impact of Native Probiotics on Autophagy and Oxidative Stress in Nickel-Exposed Mice: Insights Into the Gut-Brain Axis. Brain Behav 2025; 15:e70399. [PMID: 40022284 PMCID: PMC11870836 DOI: 10.1002/brb3.70399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The gut-brain axis plays a crucial role in mitigating the adverse effects of environmental agents such as nickel exposure. Nickel, recognized as a heavy metal, poses significant concerns for public health because of its impact on neurological disorders and oxidative stress; consequently, it is prioritized for evaluations of its effects on biological pathways. This study investigates the potential of native probiotic strains to modulate inflammatory and autophagy signaling pathways, which are vital for combating oxidative stress. METHODS Twenty male NMRI mice were divided into 4 groups randomly and were gavaged with NiCl2, followed by administration of a probiotic cocktail that consisted of 4 native probiotic Lactobacillus spp. and Bifidobacterium spp. Brain tissues from these treated mice were collected to analyze the expression of autophagy-related genes involved in phagophore, autophagosome, and autolysosome formation using quantitative real-time polymerase chain reaction (qPCR). RESULTS Our findings demonstrated that treatment with this cocktail of native probiotic Lactobacillus spp. and Bifidobacterium spp. significantly increased the expression of autophagy genes compared to the control group exposed to NiCl2 alone. Specifically, there was a notable upregulation in genes associated with autophagic processes, indicating that these probiotic strains effectively activated autophagy pathways in response to nickel-induced oxidative stress. CONCLUSION The beneficial effects of our native probiotic strains were confirmed through enhanced expression of autophagy genes and reduced neuroinflammation, suggesting their potential as therapeutic agents in mitigating the adverse impacts of nickel exposure on brain health via modulation of the gut-brain axis.
Collapse
Affiliation(s)
- Asal Hafezi
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Shokufeh Beglari
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mahdi Rohani
- Department of BacteriologyPasteur Institute of IranTehranIran
| |
Collapse
|
3
|
Feed Safety and the Development of Poultry Intestinal Microbiota. Animals (Basel) 2022; 12:ani12202890. [PMID: 36290275 PMCID: PMC9598862 DOI: 10.3390/ani12202890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Intensive gut colonisation of animals starts immediately after birth or hatch. Oral route of colonisation, and consequently the first feed, plays a significant role in the continual defining of the intestinal microbial community. The feed can influence colonisation in two ways: providing the microbial inoculum and providing the nutritional requirements that suit a specific type of microbes. In combination with environmental factors, feed shapes animal’s future health and performance from the first day of life. The objective of this review was to investigate feed safety aspects of animal nutrition from the gut colonisation aspect. Abstract The first feed offered to young chicks is likely the most important meal in their life. The complex gut colonisation process is determined with early exposure and during the first days of life before the microbial community is formed. Therefore, providing access to high-quality feed and an environment enriched in the beneficial and deprived of pathogenic microorganisms during this period is critical. Feed often carries a complex microbial community that can contain major poultry pathogens and a range of chemical contaminants such as heavy metals, mycotoxins, pesticides and herbicides, which, although present in minute amounts, can have a profound effect on the development of the microbial community and have a permanent effect on bird’s overall health and performance. The magnitude of their interference with gut colonisation in livestock is yet to be determined. Here, we present the animal feed quality issues that can significantly influence the microbial community development, thus severely affecting the bird’s health and performance.
Collapse
|
4
|
Frumkin LR, Lucas M, Scribner CL, Ortega-Heinly N, Rogers J, Yin G, Hallam TJ, Yam A, Bedard K, Begley R, Cohen CA, Badger CV, Abbasi SA, Dye JM, McMillan B, Wallach M, Bricker TL, Joshi A, Boon ACM, Pokhrel S, Kraemer BR, Lee L, Kargotich S, Agochiya M, John TS, Mochly-Rosen D. Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. Front Immunol 2022; 13:899617. [PMID: 35720389 PMCID: PMC9199392 DOI: 10.3389/fimmu.2022.899617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.
Collapse
Affiliation(s)
- Lyn R. Frumkin
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Michaela Lucas
- Faculty of Health and Medical Sciences Internal Medicine, The University of Western Australia, Perth, WA, Australia
| | | | | | - Jayden Rogers
- Linear Clinical Research Ltd, Nedlands, WA, Australia
| | - Gang Yin
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | | | - Alice Yam
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Kristin Bedard
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Rebecca Begley
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Catherine V. Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | | | - Michael Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- SPARK Sydney, Sydney, NSW, Australia
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Benjamin R. Kraemer
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Stephen Kargotich
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| | - Mahima Agochiya
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Tom St. John
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Daria Mochly-Rosen
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| |
Collapse
|