1
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
2
|
Duan Y, Su P, Gu Y, Lv X, Cao X, Wang S, Yuan Z, Sun W. A Study of the Resistance of Hu Sheep Lambs to Escherichia coli F17 Based on Whole Genome Sequencing. Animals (Basel) 2024; 14:161. [PMID: 38200892 PMCID: PMC10778179 DOI: 10.3390/ani14010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
This study aims to analyze the whole genome sequencing of E. coli F17 in antagonistic and susceptible Hu sheep lambs. The objective is to investigate the critical mutation loci in sheep and understand the genetic mechanism of sheep resistance to E. coli F17 at the genome level. Antagonist and susceptible venous blood samples were collected from Hu sheep lambs for whole genome sequencing and whole genome association analysis. A total of 466 genes with significant SNPs (p < 1.0 × 10-3) were found. GO and KEGG enrichment analysis and protein interaction network analysis were performed on these genes, and preliminary investigations showed that SNPs on CTNNB1, CDH8, APOD, HCLS1, Tet2, MTSS1 and YAP1 genes may be associated with the antagonism and susceptibility of Hu sheep lambs to E. coli F17. There are still some shortcomings that have not been explored via in vivo and in vitro functional experiments of the candidate genes, which will be our next research work. This study provides genetic loci and candidate genes for resistance of Hu sheep lambs to E. coli F17 infection, and provides a genetic basis for breeding disease-resistant sheep.
Collapse
Affiliation(s)
- Yanjun Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.S.); (Y.G.); (S.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Xie K, Yan Z, Yang Q, Huang X, Wang P, Gao X, Li J, Gun S. lnc001776 Affects CPB2 Toxin-Induced Excessive Injury of Porcine Intestinal Epithelial Cells via Activating JNK/NF-kB Pathway through ssc-let-7i-5p/IL-6 Axis. Cells 2023; 12:cells12071036. [PMID: 37048109 PMCID: PMC10093645 DOI: 10.3390/cells12071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Piglet diarrhea caused by Clostridium perfringens (C. perfringens) type C (CpC) seriously endangers the development of the pig production industry. C. perfringens beta2 (CPB2) toxin is a virulent toxin produced by CpC. Long non-coding RNAs (lncRNAs) are key regulators in the immune inflammatory response to bacterial infection. Nevertheless, the functional mechanism of lncRNAs in bacterial piglet diarrhea is unclear. Herein, a novel lncRNA lnc001776 expression was confirmed to be substantially elevated in the ileum tissue of CpC-infected diarrhea piglets and in CPB2 toxin-treated porcine small intestinal epithelial cells (IPEC-J2). lnc001776 knockdown restrained CPB2 toxin-induced apoptosis, inflammatory injury, barrier dysfunction and activation of JNK/NF-kB pathway in IPEC-J2 cells. Additionally, ssc-let-7i-5p was identified as sponge for lnc001776. Overexpression of ssc-let-7i-5p repressed CPB2-induced injury in IPEC-J2 cells. Interleukin 6 (IL-6), a target gene of ssc-let-7i-5p, was enhanced in CPB2 toxin-treated IPEC-J2 cells. Rescue experiments demonstrated that a ssc-let-7i-5p mimic reversed the effect of lnc001776 overexpression on CPB2 toxin-induced IPEC-J2 cell injury and JNK/NF-kB pathway, whereas IL-6 overexpression partially restored the impact of lnc001776. Overall, lnc001776 overexpression exacerbated CPB2 toxin-induced IPEC-J2 cell damage by sponging ssc-let-7i-5p to regulate IL-6 to activate JNK/NF-kB pathway, indicating that lnc001776 could be a key target for piglet resistance to CpC-induced diarrhea.
Collapse
|
4
|
Visser C, Lashmar SF, Reding J, Berry DP, van Marle-Köster E. Pedigree and genome-based patterns of homozygosity in the South African Ayrshire, Holstein, and Jersey breeds. Front Genet 2023; 14:1136078. [PMID: 37007942 PMCID: PMC10063850 DOI: 10.3389/fgene.2023.1136078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The erosion of genetic diversity limits long-term genetic gain and impedes the sustainability of livestock production. In the South African (SA) dairy industry, the major commercial dairy breeds have been applying estimated breeding values (EBVs) and/or have been participating in Multiple Across Country Evaluations (MACE). The transition to genomic estimated breeding values (GEBVs) in selection strategies requires monitoring of the genetic diversity and inbreeding of current genotyped animals, especially considering the comparatively small population sizes of global dairy breeds in SA. This study aimed to perform a homozygosity-based evaluation of the SA Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy cattle breeds. Three sources of information, namely 1) single nucleotide polymorphism (SNP) genotypes (3,199 animals genotyped for 35,572 SNPs) 2) pedigree records (7,885 AYR; 28,391 HST; 18,755 JER), and 3) identified runs of homozygosity (ROH) segments were used to quantify inbreeding related parameters. The lowest pedigree completeness was for the HST population reducing from a value of 0.990 to 0.186 for generation depths of one to six. Across all breeds, 46.7% of the detected ROH were between 4 megabase pairs (Mb) and 8 Mb in length. Two conserved homozygous haplotypes were identified in more than 70% of the JER population on Bos taurus autosome (BTA) 7. The JER breed displayed the highest level of inbreeding across all inbreeding coefficients. The mean (± standard deviation) pedigree-based inbreeding coefficient (FPED) ranged from 0.051 (±0.020) for AYR to 0.062 (±0.027) for JER, whereas SNP-based inbreeding coefficients (FSNP) ranged from 0.020 (HST) to 0.190 (JER) and ROH-based inbreeding coefficients, considering all ROH segment coverage (FROH), ranged from 0.053 (AYR) to 0.085 (JER). Within-breed Spearman correlations between pedigree-based and genome-based estimates ranged from weak (AYR: 0.132 between FPED and FROH calculated for ROH <4Mb in size) to moderate (HST: 0.584 between FPED and FSNP). Correlations strengthened between FPED and FROH as the ROH length category was considered lengthened, suggesting a dependency on breed-specific pedigree depth. The genomic homozygosity-based parameters studied proved useful in investigating the current inbreeding status of reference populations genotyped to implement genomic selection in the three most prominent South African dairy cattle breeds.
Collapse
Affiliation(s)
- Carina Visser
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Simon Frederick Lashmar
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jason Reding
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Donagh P. Berry
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Animal and Grassland Research and Innovation Centre, Teagasc, Co. Cork, Ireland
| | - Esté van Marle-Köster
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Chen W, Lv X, Cao X, Yuan Z, Wang S, Getachew T, Mwacharo JM, Haile A, Quan K, Li Y, Sun W. Integration of the Microbiome, Metabolome and Transcriptome Reveals Escherichia coli F17 Susceptibility of Sheep. Animals (Basel) 2023; 13:ani13061050. [PMID: 36978593 PMCID: PMC10044122 DOI: 10.3390/ani13061050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Escherichia coli (E. coli) F17 is one of the most common pathogens causing diarrhea in farm livestock. In the previous study, we accessed the transcriptomic and microbiomic profile of E. coli F17-antagonism (AN) and -sensitive (SE) lambs; however, the biological mechanism underlying E. coli F17 infection has not been fully elucidated. Therefore, the present study first analyzed the metabolite data obtained with UHPLC-MS/MS. A total of 1957 metabolites were profiled in the present study, and 11 differential metabolites were identified between E. coli F17 AN and SE lambs (i.e., FAHFAs and propionylcarnitine). Functional enrichment analyses showed that most of the identified metabolites were related to the lipid metabolism. Then, we presented a machine-learning approach (Random Forest) to integrate the microbiome, metabolome and transcriptome data, which identified subsets of potential biomarkers for E. coli F17 infection (i.e., GlcADG 18:0-18:2, ethylmalonic acid and FBLIM1); furthermore, the PCCs were calculated and the interaction network was constructed to gain insight into the crosstalk between the genes, metabolites and bacteria in E. coli F17 AN/SE lambs. By combing classic statistical approaches and a machine-learning approach, our results revealed subsets of metabolites, genes and bacteria that could be potentially developed as candidate biomarkers for E. coli F17 infection in lambs.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economics, Zhengzhou 450046, China
| | - Yutao Li
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-13952750912
| |
Collapse
|