1
|
Cheng Y, Miller MJ, Lei F. Molecular Innovations Shaping Beak Morphology in Birds. Annu Rev Anim Biosci 2025; 13:99-119. [PMID: 39546421 DOI: 10.1146/annurev-animal-030424-074906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The beak, a pivotal evolutionary trait characterized by high morphological diversity and plasticity, has enabled birds to survive mass extinction events and subsequently radiate into diverse ecological niches worldwide. This remarkable ecological adaptability underscores the importance of uncovering the molecular mechanisms shaping avian beak morphology, particularly benefiting from the rapidly advancing archives of genomics and epigenomics. We review the latest advancements in understanding how genetic and epigenetic innovations control or regulate beak development and drive beak morphological adaptation and diversification over the past two decades. We conclude with several recommendations for future endeavors, expanding to more bird lineages, with a focus on beak shape and the lower beak, and conducting functional experiments. By directing research efforts toward these aspects and integrating advanced omics techniques, the complex molecular mechanisms involved in avian beak evolution and morphogenesis will be deeply interpreted.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- College of Life Science, Hebei University, Baoding, China
| | | | - Fumin Lei
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
2
|
Benham PM, Beckman EJ. Integrating Spatial Analyses of Genomic and Physiological Data to Understand Avian Responses to Environmental Change. Integr Comp Biol 2024; 64:1792-1810. [PMID: 38830811 DOI: 10.1093/icb/icae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Projected rates of climate change over the next century are expected to force species to shift ranges, adapt, or acclimate to evade extinction. Predicting which of these scenarios may be most likely is a central challenge for conserving biodiversity in the immediate future. Modeling frameworks that take advantage of intraspecific variation across environmental gradients can be particularly important for meeting this challenge. While these space-for-time approaches are essential for climatic and genomic modeling approaches, mechanistic models that incorporate ecological physiology data into assessing species vulnerabilities rarely include intraspecific variation. A major reason for this gap is the general lack of empirical data on intraspecific geographic variation in avian physiological traits. In this review, we outline the evidence for and processes shaping geographic variation in avian traits. We use the example of evaporative water loss to underscore the lack of research on geographic variation, even in traits central to cooling costs in birds. We next demonstrate how shifting the focus of avian physiological research to intraspecific variation can facilitate greater integration with emerging genomics approaches. Finally, we outline important next steps for an integrative approach to advance understanding of avian physiological adaptation within species. Addressing the knowledge gaps outlined in this review will contribute to an improved predictive framework that synthesizes environmental, morphological, physiological, and genomic data to assess species specific vulnerabilities to a warming planet.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth J Beckman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zheng S, Ouyang J, Liu S, Tang H, Xiong Y, Yan X, Chen H. Genomic signatures reveal selection in Lingxian white goose. Poult Sci 2022; 102:102269. [PMID: 36402042 PMCID: PMC9673110 DOI: 10.1016/j.psj.2022.102269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Lingxian white goose (LXW) is a goose breed indigenous to China that is famous for its meat quality and fast growth. However, the genomic evidence underlying such excellent breeding characteristics remains poorly understood. Therefore, we performed whole-genome resequencing of 141 geese from 3 indigenous breeds to scan for selection signatures and detect genomic regions related to breed features of LXW. We identified 5 reproduction-related genes (SYNE1, ESR1, NRIP1, CCDC170, and ARMT1) in highly differentiated regions and 11 notable genes in 26 overlapping windows, some of which are responsible for meat quality (DHX15), growth traits (LDB2, SLIT2, and RBPJ), reproduction (KCNIP4), and unique immunity traits (DHX15 and SLIT2). These findings provide insights into the genetic characteristics of LXW and identify genes affecting important traits in LXW, which extends the genetic resources and basis for facilitating genetic improvement in domestic geese breeds.
Collapse
Affiliation(s)
- Sumei Zheng
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China,Fujian Vocational College of Agriculture, Fuzhou, 360119, China
| | - Jing Ouyang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Siyu Liu
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hongbo Tang
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yanpeng Xiong
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xueming Yan
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, 330013, China,Corresponding author:
| |
Collapse
|
4
|
Mo J, Lu Y, Zhu S, Feng L, Qi W, Chen X, Xie B, Chen B, Lan G, Liang J. Genome-Wide Association Studies, Runs of Homozygosity Analysis, and Copy Number Variation Detection to Identify Reproduction-Related Genes in Bama Xiang Pigs. Front Vet Sci 2022; 9:892815. [PMID: 35711794 PMCID: PMC9195146 DOI: 10.3389/fvets.2022.892815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Litter size and teat number are economically important traits in the porcine industry. However, the genetic mechanisms influencing these traits remain unknown. In this study, we analyzed the genetic basis of litter size and teat number in Bama Xiang pigs and evaluated the genomic inbreeding coefficients of this breed. We conducted a genome-wide association study to identify runs of homozygosity (ROH), and copy number variation (CNV) using the novel Illumina PorcineSNP50 BeadChip array in Bama Xiang pigs and annotated the related genes in significant single nucleotide polymorphisms and common copy number variation region (CCNVR). We calculated the ROH-based genomic inbreeding coefficients (FROH) and the Spearman coefficient between FROH and reproduction traits. We completed a mixed linear model association analysis to identify the effect of high-frequency copy number variation (HCNVR; over 5%) on Bama Xiang pig reproductive traits using TASSEL software. Across eight chromosomes, we identified 29 significant single nucleotide polymorphisms, and 12 genes were considered important candidates for litter-size traits based on their vital roles in sperm structure, spermatogenesis, sperm function, ovarian or follicular function, and male/female infertility. We identified 9,322 ROHs; the litter-size traits had a significant negative correlation to FROH. A total of 3,317 CNVs, 24 CCNVR, and 50 HCNVR were identified using cnvPartition and PennCNV. Eleven genes related to reproduction were identified in CCNVRs, including seven genes related to the testis and sperm function in CCNVR1 (chr1 from 311585283 to 315307620). Two candidate genes (NEURL1 and SH3PXD2A) related to reproduction traits were identified in HCNVR34. The result suggests that these genes may improve the litter size of Bama Xiang by marker-assisted selection. However, attention should be paid to deter inbreeding in Bama Xiang pigs to conserve their genetic diversity.
Collapse
Affiliation(s)
- Jiayuan Mo
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Siran Zhu
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Lingli Feng
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Wenjing Qi
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xingfa Chen
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Bingkun Xie
- College of Animal Science & Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Science, Nanning, China
| | - Ganqiu Lan
- College of Animal Science & Technology, Guangxi University, Nanning, China
| | - Jing Liang
- College of Animal Science & Technology, Guangxi University, Nanning, China
- *Correspondence: Jing Liang
| |
Collapse
|