1
|
Wang B, Yao W, Zhang L, Jiang L, Pan J, Chai W, Huang Z, Zuo S, Li Z, Wei Y, Zhang W. Moniezia benedeni infection promoting ICOS + T cell proliferation in sheep (Ovis aries) small intestine. BMC Vet Res 2025; 21:315. [PMID: 40316996 PMCID: PMC12048972 DOI: 10.1186/s12917-025-04761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Cellular immunity mechanisms play a crucial role in regulating anti-parasite immunity. ICOS is one of the core factors of multitype T cell subsets involved in the regulation of immune homeostasis. The aim of this experiment was to investigate the distribution patterns of ICOS+ T cells in the small intestine of sheep and determine the impact of Moniezia benedeni (M. benedeni) infection on these cells. METHODS In this study, a sheep pET-28a-ICOS recombinant plasmid was constructed, and the recombinant protein was obtained through induced expression in BL21 (DE3) cells. Furthermore, a rabbit polyclonal antibody against sheep ICOS was produced. The expression of ICOS in the sheep small intestine was analyzed using immunofluorescence and ELISA, comparing the results before and after M. benedeni infection. RESULTS The findings revealed that the purified recombinant ICOS protein had the anticipated size (14.2 kDa). The rabbit anti-sheep ICOS polyclonal antibody showed good specificity and a titer of 1:128,000. ELISA results indicated a significant increase in ICOS expression in all segments of the small intestine after M. benedeni infection (P < 0.05). The ileum exhibited the most substantial increase in expression (P < 0.001), followed by the jejunum (P < 0.05) and duodenum (P < 0.05). Immunofluorescence analysis demonstrated that ICOS+ T cells are diffusely distributed in the intestinal epithelium and around the intestinal glands in the lamina propria of the duodenum, jejunum, and ileum of sheep. Moreover, after being infected with M. benedeni, the number of ICOS+ T cells in all intestinal segments significantly increases (P < 0.05), with the most significant increase in the intestinal epithelium of the duodenum. CONCLUSIONS These findings suggest that M. benedeni infection in sheep can stimulate the proliferation of ICOS+ T cells in the small intestine. This lays the foundation for future research on the role of ICOS+ T cells in regulating cellular immunity against parasitic infections in different segments of the small intestine.
Collapse
Affiliation(s)
- Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - LiLan Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidong Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sihan Zuo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenpeng Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Zheng J, Zeng H, Zhang Q, Ma Y, Li Y, Lin J, Yang Q. Effects of intranasal administration with a symbiotic strain of Bacillus velezensis NSV2 on nasal cavity mucosal barrier in lambs. Vet Res Commun 2024; 49:21. [PMID: 39565462 DOI: 10.1007/s11259-024-10596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
The nasal mucosa is composed of multiple layers of barrier structures and is the first line of defense against infection by respiratory pathogenic microorganisms. A large number of commensal microorganisms are present in the nasal mucosa that mediate and regulate nasal mucosal barrier function. The objective of this research was to investigate the effects of commensal microorganisms on the nasal mucosal barrier. The results revealed that the strain of Bacillus velezensis (B. velezensis) NSV2 from the nasal cavity has good probiotic abilities to resist Pasteurella multocida, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Lambs were subsequently administered intranasally with B. velezensis NSV2 at 3, 12, 21, and 26 days old, respectively. For the microbial barrier, although B. velezensis NSV2 reduces the diversity of nasal microbiota, it significantly increased the relative abundance of beneficial bacteria in the nasal cavity, and reduced the abundance of potential pathogenic bacteria. For the mucus barrier, the number of goblet cells in the nasal mucosa significantly increased after B. velezensis NSV2 treatment. For the immune barrier, B. velezensis NSV2 also significantly increased the number of IgA+ B cells, CD3+ T cells and dendritic cells in the nasal mucosa, as well as the mRNA expression of interleukin (IL) 6, IL11, CCL2, and CCL20 (P < 0.05). The protein level of CCL20 also significantly raised in nasal washings (P < 0.05). Moreover, the heat-inactivated and culture products of B. velezensis NSV2 also drastically induced the expression of CCL20 in nasal mucosa explants (P < 0.05), but lower than that of the live bacteria. This study demonstrated that a symbiotic strain of B. velezensis NSV2 could improve the nasal mucosal barrier, and emphasized the important role of nasal symbiotic microbiota.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhang W, Yao W, Meng Y, Luo F, Han M, Mu Q, Jiang L, He W, Fan X, Wang W, Wang B. Effect of Moniezia Benedeni infection on ileal transcriptome profile characteristics of sheep. BMC Genomics 2024; 25:933. [PMID: 39370521 PMCID: PMC11457389 DOI: 10.1186/s12864-024-10853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The intestinal mucosal immune system, renowned for its precise and sensitive regulation, can provide comprehensive and effective protection for the body, among which the ileum is a critical induction site for regulating mucosal immune homeostasis. Moniezia benedeni parasitizes the small intestine of sheep and can cause serious pathological damage or even death to the host when the infection is severe. In this study, 5 sheep infected with Moniezia benedeni were selected as the infected group, and 5 uninfected sheep were selected as the control group. The ileal transcriptome profile characteristics of Moniezia benedeni infection were analyzed based on RNA-seq sequencing technology, aiming to lay a foundation for further exploring the perception mechanism of sheep intestines to Moniezia benedeni infection and formulating effective prevention and control strategies. RESULTS The results showed that a total of 3,891 differentially expressed genes (DEGs) were detected in the ileum tissues of sheep between the infected and control groups with 2,429 up-regulated genes and 1,462 down-regulated genes. GO and KEGG pathway enrichment analysis of differential genes, as well as Clue GO analysis showed that differential genes were significantly enriched in immune and metabolic-related biological processes and signaling pathways. Particularly, in immune-related signaling pathways, the B cell receptor signaling pathway was significantly down-regulated, while in metabolic regulation related signaling pathways, Bile secretion, Fat digestion and absorption and Vitamin digestion and absorption were notably up-regulated. On this basis, the differential core genes related to immune metabolism were verified by qRT-PCR method. The results showed that OVAR, CD3E, CD8A, CD4 and CD28 were significantly up-regulated (P < 0.05), while CIITA, BLNK, BCL6 and CD79A were significantly down-regulated (P < 0.05), which were consistent with transcriptome sequencing data. CONCLUSIONS The results demonstrated that Moniezia benedeni infection significantly affected the immune and metabolic processes in sheep ileum, particularly, it significantly inhibited the activation process of host B cells, and also led to an overactive function of bile acid metabolism. This finding provides a solid foundation for further elucidating the response mechanism of Peyer's patches in sheep ileum to Moniezia tapeworm infection.
Collapse
Affiliation(s)
- Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongcheng Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fuzhen Luo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mengling Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qian Mu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lidong Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Huang Z, Yao W, He W, Pan J, Chai W, Wang B, Jia Z, Fan X, Wang W, Zhang W. Moniezia benedeni drives the SNAP-25 expression of the enteric nerves in sheep's small intestine. BMC Vet Res 2024; 20:283. [PMID: 38956647 PMCID: PMC11218246 DOI: 10.1186/s12917-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.
Collapse
Affiliation(s)
- Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Jia
- People's Government of Heisongyi Township, Wuwei, 733000, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
5
|
Fang YD, Xie F, Zhang WD, Zeng WW, Lu J, Cheng YJ, Wang WH. Age-dependent distribution of IgA and IgG antibody-secreting cells in the pharyngeal tonsil of the Bactrian camel. Vet J 2024; 305:106131. [PMID: 38763403 DOI: 10.1016/j.tvjl.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu-Jiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Pan J, Yao WL, Liu LP, Wang BS, Chai WZ, Huang Z, Fan XP, He WH, Wang WH, Zhang WD. Moniezia benedeni infection increases IgE + cells in sheep (Ovis aries) small intestine. Vet Parasitol 2024; 328:110169. [PMID: 38520755 DOI: 10.1016/j.vetpar.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 μm2, 1.80 cells / 104 μm2, and 1.44 cells / 104 μm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 μm2, 3.01 cells / 104 μm2, and 2.09 cells / 104 μm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.
Collapse
Affiliation(s)
- Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bao-Shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Zhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xi-Ping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Hong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
7
|
Chai W, Yao W, Pan J, Huang Z, Wang B, Xu B, Fan X, He W, Wang W, Zhang W. Moniezia benedeni drives CD3 + T cells residence in the sheep intestinal mucosal effector sites. Front Vet Sci 2024; 11:1342169. [PMID: 38371601 PMCID: PMC10869452 DOI: 10.3389/fvets.2024.1342169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction T cells are the core of the cellular immunity and play a key role in the regulation of intestinal immune homeostasis. In order to explore the impact Moniezia benedeni (M. benedeni) infection on distributions of CD3+ T cells in the small intestine of the sheep. Methods In this study, sheep pET-28a-CD3 recombinant plasmid were constructed and expressed in BL21 receptor cells, then the rabbit anti-sheep CD3 polyclonal antibody was prepared through recombinant protein inducing. The M. benedeni-infected sheep (infection group, n = 6) and healthy sheep (control group, n = 6) were selected, and the distributions of CD3+ T cells in intestinal laminae propria (LP) and mucous epitheliums were observed and analyzed systematically. Results The results showed that the rabbit anti-sheep CD3 polyclonal antibody had good potency and specificity. In the effector area of small intestine, a large number of CD3+ T cells were mainly diffusely distributed in the intestinal LP as well as in the mucous epitheliums, and the densities of intestinal LP from duodenum to jejunum to ileum were 6.01 cells/104 μm2, 7.01 cells/104 μm2 and 6.43 cells/104 μm2, respectively. Their distribution densities in mucous epitheliums were 6.71 cells/104 μm2, 7.93 cells/104 μm2 and 7.21 cells/104 μm2, respectively; in the infected group, the distributions of CD3+ T cells were similar to that of the control group, and the densities in each intestinal segment were all significantly increased (p < 0.05), meanwhile, the total densities of CD3+ T cells in duodenum, jejunum and ileum were increased by 33.43%, 14.50%, and 34.19%. In LP and mucous epitheliums, it was increased by 33.57% and 27.92% in duodenum; by 25.82% and 7.07% in jejunum, and by 27.07% and 19.23% in ileum, respectively. Discussion It was suggested that M. benedeni infection did not change the spatial distributions of CD3+ T cells in the small intestine of sheep, but significantly increased their densities, which lays a foundation for further research on the regulatory mechanism of sheep intestinal mucosal immune system against M. benedeni infection.
Collapse
Affiliation(s)
- Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Bin Xu
- Lanzhou Safari Park Management Co., Lanzhou, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
8
|
Liu Q, Zhang W, Wang B, Shi J, He P, Jia L, Huang Y, Xu M, Ma Y, Cheng Q, Lei Z. Effects of Oregano Essential Oil on IgA +, IgG +, and IgM + Cells in the Jejunum of Castrated Holstein Bulls. Animals (Basel) 2023; 13:3766. [PMID: 38136804 PMCID: PMC10740482 DOI: 10.3390/ani13243766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to investigate the effect of oregano essential oil on IgA+, IgG+, and IgM+ cells in the jejunum of castrated Holstein bulls. Twelve castrated Holstein bulls were randomly divided into control (YCK) and oregano essential oil (YEO) groups. Pathological changes in the jejunum were observed by HE staining, and the expression levels of IgA, IgG, and IgM in the jejunum were detected by ELISA. The distributions of IgA+, IgG+, and IgM+ cells in the jejunum were analysed by multiplex immunofluorescence and immunohistochemistry. The results showed that the jejunal villi were detached in the YCK group, which may have been related to inflammation, while the intestinal epithelium was clear and intact in the YEO group. The expressions of IgA, IgG, and IgM were significantly reduced by 40.75%, 30.76%, and 50.87%. The IgA+, IgG+, and IgM+ cells were diffusely distributed in the lamina propria of the jejunum, and were reduced by 17.07%, 6.44%, and 6.15%, respectively. Oregano essential oil did not alter the distribution characteristics of IgA+, IgG+, or IgM+ cells in the jejunum, but it suppressed inflammatory response, decreased immunoglobulin content, and significantly enhanced the formation of an immune barrier in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Qiyan Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Wangdong Zhang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.Z.); (B.W.)
| | - Baoshan Wang
- College of Animal Medicine, Gansu Agricultural University, Lanzhou 730070, China; (W.Z.); (B.W.)
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Meiling Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| | - Qiang Cheng
- Jing Chuan Xu Kang Food Co., Ltd., Pingliang 745000, China;
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Q.L.); (J.S.); (P.H.); (L.J.); (M.X.); (Y.M.)
| |
Collapse
|
9
|
Agüera EI, Requena L, García-Moreno MB, Pérez-Priego MA, Requena F. Promotion of Pregnant Merino Ewes' Welfare with the Introduction of a Drought- and High-Temperature-Resistant Cereal into Their Diet: Analysis of Tritordeum Meadow. Animals (Basel) 2023; 13:3155. [PMID: 37835760 PMCID: PMC10571576 DOI: 10.3390/ani13193155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Tritordeum is a new cereal resistant to drought and high temperatures, and it is a very healthy crop. The aim of this study was to compare two different diets (tritordeum meadow vs. oat meadow) for grazing pregnant ewes to determine if there was any effect on the objective physiological indicators of animal welfare. A total of 150 pregnant Merino ewes (3-5 years) were randomly divided into two groups (n = 75 each) to be fed with two different meadows, being evaluated during the spring season. Red blood cells count, haemoglobin, packed cell volume, white blood cell count, neutrophiles/lymphocytes ratio, lactate dehydrogenase, creatinine phosphokinase, aspartate aminotransferase, glucose, cortisol, total plasma proteins, albumin, globulins, albumin/globulins ratio, alkaline phosphatase, glutamate dehydrogenase, IgA, and IgG were determined. Overall, the results of this study indicate that the welfare of pregnant ewes fed with tritordeum meadow was better than that of pregnant ewes fed with oat meadow. Tritordeum meadow had a positive influence on the physiological parameters of animal welfare studied in pregnant Merino ewes. Therefore, tritordeum meadow can be considered a functional feed, as it has a beneficial effect on health beyond its basic nutritional value. Farmers are recommended to feed a cereal such as tritordeum grassland to their sheep, as it not only ensures that the animals benefit from all the nutrients, but also prevents diseases and improves their quality of life. In addition, the cereal's resistance to fungal diseases makes it suitable for use in sustainable production systems with a reduced environmental footprint.
Collapse
Affiliation(s)
- Estrella I. Agüera
- Cellular Biology, Physiology and Immunology Department, Faculty of Veterinary, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain; (E.I.A.); (L.R.); (F.R.)
| | - Lucía Requena
- Cellular Biology, Physiology and Immunology Department, Faculty of Veterinary, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain; (E.I.A.); (L.R.); (F.R.)
| | - María B. García-Moreno
- Statistics and Econometrics Department, University of Cordoba, Agri-Food Campus of International Excellence ceiA3, 14071 Cordoba, Spain
| | - Manuel A. Pérez-Priego
- Statistics and Econometrics Department, University of Cordoba, Agri-Food Campus of International Excellence ceiA3, 14071 Cordoba, Spain
| | - Francisco Requena
- Cellular Biology, Physiology and Immunology Department, Faculty of Veterinary, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain; (E.I.A.); (L.R.); (F.R.)
| |
Collapse
|
10
|
Zheng J, Lin J, Yang C, Ma Y, Liu P, Li Y, Yang Q. Characteristics of nasal mucosal barrier in lambs at different developmental stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104587. [PMID: 36370908 DOI: 10.1016/j.dci.2022.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The mucosal barriers of a lamb's nasal cavity are composed of a multi-layer barrier designed to protect against the invasion of harmful microorganisms. However, despite the protective measures, respiratory pathogens still infect the sheep from the nasal cavity. Therefore, our study aimed to investigate the characteristics of lamb's nasal cavity barrier at different developmental stages. For nasal histological characteristics, our study revealed that the conchoidal curvature of the inferior nasal conch and the number of glands significantly increased with lamb development. For nasal mucosal barrier characteristics, physical and immune barriers were carefully explored. Initially, we observed that the thickness and proliferative capacity of nasal epithelial significantly increased from fetal to 21 days, which then decreased at 60 days. Then, our study showed that the number of goblet cells (GCs) of 21 days old lamb was significantly higher than in other stages of development. Besides, we found that the number of nasal immune cells, such as dendritic cells, CD3+ T cells, IgA+ B cells, and nasal-associated lymphoid tissue (NALT), were all significantly increased not only from the proximal to distal side in the nasal cavity but also with their age. Totally, our study revealed various characteristics of the mucosal barriers of a lamb's nasal cavity, which provide a reference for explaining the susceptibility of respiratory tract infection in lambs.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chengjie Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Yucheng Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|