1
|
Zhang X, Zhou L, Ge X, Gao P, Zhou Q, Han J, Guo X, Zhang Y, Yang H. Advances in the diagnostic techniques of African swine fever. Virology 2025; 603:110351. [PMID: 39693789 DOI: 10.1016/j.virol.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
African swine fever (ASF) is a highly contagious disease of pigs caused by African swine fever virus, which poses a huge threat to the global swine industry and is therefore listed as a notifiable disease by the World Organization for Animal Health. Due to the global lack of safe and efficacious vaccines and therapeutic drugs, early diagnosis of cases, whether on-site or laboratory, are crucial for the prevention and control of ASF. Therefore, rapid and reliable diagnosis and detection have become the main means to combat ASF. In this paper, various diagnostic techniques developed globally for ASF diagnosis, including etiological, molecular biological and serological diagnostic techniques, as well as conventional and novel diagnostic techniques, were comprehensively reviewed, and the main advantages and disadvantages of currently commonly used diagnostic techniques were introduced. It is expected that this paper will provide references for selecting appropriate ASF diagnostic techniques in different application scenarios, and also provide directions for the development of innovative diagnostic techniques for ASF in the future.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Shi K, Hu X, Yin Y, Shi Y, Pan Y, Long F, Feng S, Li Z. Development of a triplex crystal digital RT-PCR for the detection of PHEV, PRV, and CSFV. Front Vet Sci 2024; 11:1462880. [PMID: 39726583 PMCID: PMC11669669 DOI: 10.3389/fvets.2024.1462880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV. The results indicated that this assay had high sensitivity, and the limitation of detection (LODs) for PHEV, PRV, and CSFV were 4.812, 4.047, and 5.243 copies/reaction, respectively, which was about 50 times higher than that of multiplex real-time quantitative RT-PCR (RT-qPCR). This assay showed good specificity, without cross-reaction with other important swine pathogens, i.e., FMDV, PRRSV, PEDV, SIV, TGEV, PoRV, and PCV2. This assay had high repeatability, with intra-assay coefficients of variation (CVs) of 0.73-1.87%, and inter-assay CVs of 0.57-2.95%. The developed assay was used to test 1,367 clinical tissue samples from Guangxi province in China, and the positive rates of PHEV, PRV, and CSFV were 3.44% (47/1,367), 1.24% (17/1,367), and 1.90% (26/1,367), respectively, with a coincidence rate of 98.98% and a Kappa value of 0.94 to the reference multiplex RT-qPCR. The established triplex cdRT-PCR was a highly rapid, sensitive, and accurate assay to detect and differentiate PHEV, PRV, and CSFV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Zhu Y, Zhang M, Jie Z, Guo S, Zhu Z, Tao SC. Strategic nucleic acid detection approaches for diagnosing African swine fever (ASF): navigating disease dynamics. Vet Res 2024; 55:131. [PMID: 39375775 PMCID: PMC11460097 DOI: 10.1186/s13567-024-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic. The dynamics of the ASF virus load and antibody response necessitate the adoption of various detection strategies at different stages of infection, a topic that has received limited attention to date. This review offers detailed guidance for choosing appropriate ASF diagnostic techniques tailored to the clinical manifestations observed from the acute to chronic phases, including asymptomatic cases. We comprehensively summarize and evaluate the latest advancements in ASFV detection methods, such as CRISPR-based diagnostics, biosensors, and microfluidics. Additionally, we address the challenges of false negatives or positives due to ASF variants or the use of injected live attenuated vaccines. This review provides an exhaustive list of diagnostic tests suitable for detecting each stage of symptoms and potential target genes for developing new detection methods. In conclusion, we highlight the current challenges and future directions in ASFV detection, underscoring the need for continued research and innovation in this field.
Collapse
Affiliation(s)
- Yuanshou Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, 200240, China
| | - Shujuan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Li W, Zhang S, Dang S, Gao L, Li G, Cheng D, Jiang L, Huang T, Zhai J. Establishment of an A/T-Rich Specifically MGB Probe digital droplet PCR Assays Based on SNP for Brucella wild strains and vaccine strains. Diagn Microbiol Infect Dis 2024; 110:116432. [PMID: 39024932 DOI: 10.1016/j.diagmicrobio.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
In recent years, immunization with the S2 live-attenuated vaccine has been recognized as the most economical and effective strategy for preventing brucellosis in Inner Mongolia, China. However, there are still challenges related to vaccine toxicity and the inability to distinguish between vaccine immunization and natural infection. Therefore, in this study, we developed a digital droplet polymerase chain reaction (ddPCR) assay based on single-nucleotide polymorphism (SNP) loci to identify wild Brucella strains and S2 vaccine strains. The assay demonstrated excellent linearity (R2> 0.99) with a lower detection limit of 10 copies/µL for both wild and vaccine strains. Additionally, the ddPCR assay outperformed the real-time fluorescent quantitative PCR (qPCR) assay in screening 50 clinical samples. We have established an effective and highly sensitive ddPCR assay for Brucella, providing an efficient method for detecting and differentiating wild strains of Brucella from the S2 vaccine strain.
Collapse
Affiliation(s)
- Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuai Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sheng Dang
- Keerqin District First People's Hospital, Tongliao 028000, China
| | - Lanzhu Gao
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Guangchen Li
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Dawei Cheng
- Beidahuang Industry Group General Hospital, Harbin 150000, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tianpeng Huang
- College of Public Health, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| |
Collapse
|
5
|
Wang Z, Wang Y, Zhang Y, Qin G, Sun W, Wang A, Wang Y, Zhang G, Zhao J. On-site detection and differentiation of African swine fever virus variants using an orthogonal CRISPR-Cas12b/Cas13a-based assay. iScience 2024; 27:109050. [PMID: 38571763 PMCID: PMC10987800 DOI: 10.1016/j.isci.2024.109050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024] Open
Abstract
The African swine fever virus (ASFV) and its variants have induced substantial economic losses in China, prompting a critical need for efficient detection methods. Several PCR-based methods have been developed to discriminate between wild-type ASFV and gene-deleted variants. However, the requirement for sophisticated equipment and skilled operators limits their use in field settings. Here, we developed a CRISPR-Cas12b/Cas13a-based detection assay that can identify ASFV variants with minimal equipment requirements and a short turnaround time. The assay utilizes the distinct DNA/RNA collateral cleavage preferences of Cas12b/Cas13a to detect two amplified targets from multiplex recombinase polymerase amplification (RPA) in a single tube, and the results can be visualized through fluorescent or lateral-flow readouts. When tested with clinical samples in field settings, our assay successfully detected all ASFV-positive samples in less than 60 min. This assay provides a rapid on-site surveillance tool for detecting ASFV and its emerging variants.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yu Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosong Qin
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jianguo Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Yang R, Fu WG, Zhou J, Zhang YF, Yang L, Yang HB, Fu LZ. Enhanced detection of African swine fever virus in samples with low viral load using digital PCR technology. Heliyon 2024; 10:e28426. [PMID: 38689956 PMCID: PMC11059528 DOI: 10.1016/j.heliyon.2024.e28426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Detection of low viral load samples has long been a challenge for African swine fever (ASF) prevention and control. This study aimed to compare the detection efficacy of droplet digital PCR(ddPCR) and quantitative PCR(qPCR) for African swine fever virus (ASFV) at different viral loads, with a focus on assessing the accuracy of ddPCR in detecting low viral load samples. The results revealed that ddPCR had a detection limit of 1.97 (95% CI 1.48 - 4.12) copies/reaction and was 18.99 times more sensitive than qPCR (detection limit: 37.42, 95% CI 29.56 - 69.87 copies/reaction). In the quantification of high, medium, and low viral load samples, ddPCR showed superior stability with lower intra- (2.06% - 7.58%) and inter-assay (3.83% - 7.50%) coefficients of variation than those of qPCR (intra-assay: 8.08%-29.86%; inter-assay: 9.27%-34.58%). Bland-Altman analysis indicated acceptable consistency between ddPCR and qPCR for high and medium viral load samples; however, discrepancies were observed for low viral load samples, where two samples (2/24, 8.33%) exhibited deviations beyond the acceptable range (-46.18 copies/reaction). Moreover, ddPCR demonstrated better performance in detecting ASFV in clinical samples from asymptomatic pigs and environmental samples, with qPCR showing false negative rates of 7.69% (2/26) and 27.27% (12/44), respectively. McNemar analysis revealed significant differences between the two methods (P = 0.000) for samples with a viral load <100 copies/reaction. The results of this study demonstrate that ddPCR has better detection limits and adaptability than qPCR, allowing for a more accurate detection of ASFV in early-stage infections and low-concentration environmental samples. These findings highlight the potential of ddPCR in the prevention and control of ASF.
Collapse
Affiliation(s)
- R. Yang
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- National Animal Disease-Chongqing Monitoring Station, Chongqing, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - W.-G. Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- National Animal Disease-Chongqing Monitoring Station, Chongqing, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - J. Zhou
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Y.-F. Zhang
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- National Animal Disease-Chongqing Monitoring Station, Chongqing, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - L. Yang
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- National Animal Disease-Chongqing Monitoring Station, Chongqing, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| | - H.-B. Yang
- Agricultural Science and Technology Promotion Center of Da'an District, Zigong City, Sichuan, China
| | - L.-Z. Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- National Animal Disease-Chongqing Monitoring Station, Chongqing, China
- Chongqing Research Center of Veterinary Biological Products Engineering Technology, Chongqing, China
| |
Collapse
|
7
|
Shi K, Qian X, Shi Y, Wei H, Pan Y, Long F, Zhou Q, Mo S, Hu L, Li Z. A triplex crystal digital PCR for the detection of genotypes I and II African swine fever virus. Front Vet Sci 2024; 11:1351596. [PMID: 38628942 PMCID: PMC11019002 DOI: 10.3389/fvets.2024.1351596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
African swine fever (ASF) is a highly contagious and lethal viral disease that causes severe hemorrhagic fever in pigs. It keeps spreading around the world, posing a severe socioeconomic risk and endangering biodiversity and domestic food security. ASF first outbroke in China in 2018, and has spread to most provinces nationwide. Genotypes I and II ASF virus (ASFV) as the etiological pathogens have been found in China. In this study, three pairs of specific primers and probes targeting the ASFV B646L gene, F1055L gene, and E183L gene were designed to detect universal, genotype I, and genotype II strains, respectively. A triplex crystal digital PCR (cdPCR) was established on the basis of optimizing various reaction conditions. The assay demonstrated remarkably sensitive with low limits of detection (LODs) of 5.120, 4.218, 4.588 copies/reaction for B646L, F1055L, and E183L gene, respectively; excellent repeatability with 1.24-2.01% intra-assay coefficients of variation (CVs) and 1.32-2.53% inter-assay CVs; good specificity for only detection of genotypes I and II ASFV, without cross-reactivity with PCV2, PRV, SIV, PRRSV, PEDV, FMDV, and CSFV. The triplex cdPCR was used to test 1,275 clinical samples from Guangxi province of China, and the positivity rates were 5.05, 3.22, and 1.02% for genotype I, genotype II, and co-infection of genotypes I and II, respectively. These 1,275 clinical samples were also detected using a reported reference triplex real-time quantitative PCR (qPCR), and the agreements of detection results between these two methods were more than 98.98%. In conclusion, the developed triplex cdPCR could be used as a rapid, sensitive, and accurate method to detect and differentiate genotypes I and II strains of ASFV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xinxiu Qian
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Shi K, Zhao K, Wei H, Zhou Q, Shi Y, Mo S, Long F, Hu L, Feng S, Mo M. Triplex Crystal Digital PCR for the Detection and Differentiation of the Wild-Type Strain and the MGF505-2R and I177L Gene-Deleted Strain of African Swine Fever Virus. Pathogens 2023; 12:1092. [PMID: 37764900 PMCID: PMC10534775 DOI: 10.3390/pathogens12091092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a severe and highly contagious viral disease that affects domestic pigs and wild boars, characterized by a high fever and internal bleeding. The disease is caused by African swine fever virus (ASFV), which is prevalent worldwide and has led to significant economic losses in the global pig industry. In this study, three pairs of specific primers and TaqMan probes were designed for the ASFV B646L, MGF505-2R and I177L genes. After optimizing the reaction conditions of the annealing temperature, primer concentration and probe concentration, triplex crystal digital PCR (cdPCR) and triplex real-time quantitative PCR (qPCR) were developed for the detection and differentiation of the wild-type ASFV strain and the MGF505-2R and/or I177L gene-deleted ASFV strains. The results indicate that both triplex cdPCR and triplex qPCR were highly specific, sensitive and repeatable. The assays could detect only the B646L, MGF505-2R and I177L genes, without cross-reaction with other swine viruses (i.e., PRRSV, CSFV, PCV2, PCV3, PEDV, PDCoV and PRV). The limit of detection (LOD) of triplex cdPCR was 12 copies/reaction, and the LOD of triplex qPCR was 500 copies/reaction. The intra-assay and inter-assay coefficients of variation (CVs) for repeatability and reproducibility were less than 2.7% for triplex cdPCR and less than 1.8% for triplex qPCR. A total of 1510 clinical tissue samples were tested with both methods, and the positivity rates of ASFV were 14.17% (214/1510) with triplex cdPCR and 12.98% (196/1510) with triplex qPCR, with a coincidence rate of 98.81% between the two methods. The positivity rate for the MGF505-2R gene-deleted ASFV strains was 0.33% (5/1510), and no I177L gene-deleted ASFV strain was found. The results indicate that triplex cdPCR and triplex qPCR developed in this study can provide rapid, sensitive and accurate methods for the detection and differentiation of the ASFV B646L, MGF505-2R and I177L genes.
Collapse
Affiliation(s)
- Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (K.Z.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Kang Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (K.Z.); (Y.S.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (K.Z.); (Y.S.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (H.W.); (Q.Z.); (S.M.); (F.L.); (L.H.); (S.F.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (K.Z.); (Y.S.)
| |
Collapse
|