Ammar S, Christopher CJ, Szafranski N, Jones R, Rajeev S, Castro HF, Campagna SR, Gerhold R. Metabolic Profile of
Histomonas meleagridis in Dwyer's Media with and Without Rice Starch.
Metabolites 2024;
14:650. [PMID:
39728431 DOI:
10.3390/metabo14120650]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES
Histomonas meleagridis, the causative agent of histomonosis (i.e., blackhead disease), threatens the poultry industry with serious economic losses due to its high mortality and morbidity in turkey and chicken flocks. In vitro studies are complicated by the inability to culture the parasite axenically. Histomonas meleagridis has been propagated in Dwyer's media, which contains a starch source and serum, for over 50 years. The presence of insoluble starch component in Dwyer's media represents an obstacle for the commercialization of such media, and the role of starch in media is poorly understood.
METHODS
To investigate the intracellular metabolomic differences in H. meleagridis and undefined bacteria grown in Dwyer's media with rice starch (SD) and without rice starch (NR), we conducted a global metabolomics analysis using ultra-high-performance liquid chromatography-high-resolution mass spectrometry.
RESULTS
SD significantly supported the growth of H. meleagridis compared to NR. There was no significant difference in bacterial growth between SD and NR media at various timepoints. From the intracellular metabolic analysis of samples collected from the SD and NR media, a total of 170 known metabolites were identified. H. meleagridis appears to be the major contributor to global metabolic differences.
CONCLUSIONS
We found that riboflavin had the highest variable importance in the projection score, and metabolites involved in riboflavin biosynthesis significantly contributed to the differences between SD and NR in the media immediately after the inoculation of H. meleagridis and undefined bacteria, warranting further investigations into the role of riboflavin biosynthesis in H. meleagridis growth.
Collapse