1
|
Mira F, Franzo G, Schirò G, Vicari D, Purpari G, Cannella V, Giudice E, Trapani M, Carrozzo A, Spene G, Talarico V, Guercio A. Introduction of a Divergent Canine Parvovirus Type 2b Strain with a Dog in Sicily, Southern Italy, Through the Mediterranean Sea Route to Europe. Pathogens 2025; 14:108. [PMID: 40005485 PMCID: PMC11857852 DOI: 10.3390/pathogens14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Despite over four decades since its emergence, canine parvovirus type 2 (CPV-2) remains a relevant disease for dogs. Few studies, primarily only recent ones based on phylodynamic and phylogeography approaches, have highlighted the impact of rapid and long-distance transport of dogs on the CPV-2 spreading dynamics. The present study reports the genomic characterization of a CPV-2 strain detected in a dog introduced into Italy from the coasts of North Africa through the Mediterranean Sea route to Europe. The nearly complete CPV-2 sequence was obtained and analyzed. The viral isolate was characterized as a CPV-2b variant, showing genetic signatures distinct from those of CPV-2 strains detected to date in Europe. Phylodynamic and phylogeographic approaches revealed a close correlation with CPV-2 strains recently reported in the Middle East (Turkey and Egypt), which likely originated or co-evolved from Asian ones. It is at least suggestive that the inferred spreading pattern overlaps with the routes often followed by migrants travelling from Asia and Middle East to Europe, passing through Africa. This evidence for the introduction of CPV-2 via the Mediterranean Sea route to Europe highlights the relevant role of the dog movements in the global spread of emerging or re-emerging viral pathogens.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, ME, Italy;
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, PD, Italy;
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, ME, Italy;
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Vincenza Cannella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, ME, Italy;
| | - Martino Trapani
- Azienda Sanitaria Provinciale di Trapani, Dipartimento di Prevenzione Veterinaria, U.O.S. Igiene degli Allevamenti e delle Produzioni Zootecniche (SIAPZ) Trapani-Pantelleria, 91016 Erice, TP, Italy;
| | - Anna Carrozzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Giada Spene
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Virginia Talarico
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, PA, Italy; (F.M.); (D.V.); (G.P.); (V.C.); (A.C.); (G.S.); (V.T.); (A.G.)
| |
Collapse
|
2
|
Facile V, Sabetti MC, Balboni A, Urbani L, Tirolo A, Magliocca M, Lunetta F, Dondi F, Battilani M. Detection of Anaplasma spp. and Ehrlichia spp. in dogs from a veterinary teaching hospital in Italy: a retrospective study 2012-2020. Vet Res Commun 2024; 48:1727-1740. [PMID: 38536514 PMCID: PMC11147850 DOI: 10.1007/s11259-024-10358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 06/04/2024]
Abstract
Anaplasma phagocytophilum, Anaplasma platys and Ehrlichia canis, responsible of diseases in dogs, are tick-borne pathogens with a proven or potential zoonotic role that have shown increasing prevalence worldwide. The aims of this retrospective study were to assess the frequency of Anaplasma spp. and Ehrlichia spp. exposure in dogs tested in a veterinary teaching hospital in Italy over a 9-year period, to compare the performance of the diagnostic tests used, to evaluate correlations with clinical data, and to genetically analyse the identified bacteria. During the study period, 1322 dogs tested by at least one of the rapid immunoenzymatic test, indirect immunofluorescent antibody test or end-point PCR assay for Anaplasmataceae detection were included. Dogs were tested if they had clinical signs or clinicopathological alteration or risk factors related to infection, and if they were potential blood-donor animals. Ninety-four of 1322 (7.1%) dogs tested positive for at least one pathogen: 53 (4.3%) for A. phagocytophilum, one (0.1%) for A. platys and 63 (4.6%) for E. canis. The number of dogs tested increased and the positivity rate progressively declined over the years. Comparison of tests showed a near-perfect agreement between serological tests and a poor agreement between PCR and indirect assays. A breed predisposition has been highlighted for A. phagocytophilum infection in hunting breed dogs and for E. canis infection in mixed breed dogs. Phylogeny confirmed potential zoonotic implications for A. phagocytophilum and showed no correlation of the identified bacteria with the geographical origin. Our study provides new insights into possible risk factors in dogs and evidenced discordant results between different tests, suggesting that a combination of serological and molecular assays is preferable for a correct diagnosis.
Collapse
Affiliation(s)
- Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Maria Chiara Sabetti
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Alessandro Tirolo
- Department of Veterinary Sciences, University of Parma, Strada del Taglio 10, Parma, 43126, Italy
| | - Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Lunetta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy.
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, Bologna, 40064, Italy
| |
Collapse
|
3
|
Mira F, Schirò G, Franzo G, Canuti M, Purpari G, Giudice E, Decaro N, Vicari D, Antoci F, Castronovo C, Guercio A. Molecular epidemiology of canine parvovirus type 2 in Sicily, southern Italy: A geographical island, an epidemiological continuum. Heliyon 2024; 10:e26561. [PMID: 38420403 PMCID: PMC10900816 DOI: 10.1016/j.heliyon.2024.e26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Since it emerged as a major dog pathogen, canine parvovirus type 2 (CPV-2) has featured a remarkable genetic and phenotypic heterogeneity, whose biological, epidemiological, and clinical impact is still debated. The continuous monitoring of this pathogen is thus of pivotal importance. In the present study, the molecular epidemiology of CPV-2 in Sicily, southern Italy, has been updated by analysing 215 nearly complete sequences of the capsid protein VP2, obtained from rectal swabs/faeces or tissue samples collected between 2019 and 2022 from 346 dogs with suspected infectious gastrointestinal disease. The presence of the original CPV-2 type (4%) and CPV-2a (9%), CPV-2b (18%), or CPV-2c (69%) variants was documented. Over the years, we observed a decrease in the frequency of CPV-2a/-2b and a rapid increase of CPV-2c frequency, with a progressive replacement of the European lineage of CPV-2c by the Asian lineage. The observed scenario, besides confirming epidemiological relevance of CPV-2, highlights the occurrence of antigenic variant shifts over time, with a trend toward the replacement of CPV-2a, CPV-2b, and the European lineage of CPV-2c by the emerging Asian CPV-2c lineage. The comparison with other Italian and international sequences suggests the occurrence of viral exchange with other Italian regions and different countries, although the directionality of such viral flows could not be often established with confidence. In several instances, potential CPV-2 introductions led to epidemiological dead ends. However, major, long-lasting clades were also identified, supporting successful infection establishment, local spreading, and evolution. These results, besides demonstrating the need for implementing more effective control measures to prevent viral introductions and minimize circulation, stress the relevance of routine monitoring activities as the only tool to effectively understand CPV-2 epidemiology and evolution, and develop adequate countermeasures.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, 70010, Valenzano, (BA), Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| |
Collapse
|