1
|
Ji Y, Yang Y, Wu Z. Programming of metabolic and autoimmune diseases in canine and feline: linkage to the gut microbiome. Microb Pathog 2023; 185:106436. [PMID: 37913827 DOI: 10.1016/j.micpath.2023.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
Metabolic and autoimmune disorders have long represented challenging health problems because of their growing prevalence in companion animals. The gut microbiome, made up of trillions of microorganisms, is implicated in multiple physiological and pathological processes. Similar to human beings, the complicated microbiome harbored in the gut of canines and felines emerges as a key factor determining a wide range of normal and disease conditions. Evidence accumulated from recent findings on canine and feline research uncovered that the gut microbiome is actively involved in host metabolism and immunity. Notably, the composition, abundance, activity, and metabolites of the gut microbiome are all elements that shape clinical outcomes concerning metabolism and immune function. This review highlights the implications of the gut microbiome for metabolic disorders (obesity, diabetes, and hepatic lipidosis) and autoimmune diseases (inflammatory bowel disease, osteoarthritis, asthma, and myasthenia gravis) in canine and feline animals, providing novel strategies and therapeutic targets for the prevention and treatment of pet diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Yu J, Li C, Li X, Liu K, Liu Z, Ni W, Zhou P, Wang L, Hu S. Isolation and functional analysis of acid-producing bacteria from bovine rumen. PeerJ 2023; 11:e16294. [PMID: 37868061 PMCID: PMC10590097 DOI: 10.7717/peerj.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Ruminants such as cattle rely mainly on microbes in the rumen to digest cellulose and hemicellulose from forage, and the digestion products are mainly absorbed and utilized by the host in the form of short chain fatty acids (SCFAs). This study aimed to isolate acid-producing strains from the cattle rumen and investigate their functions. A total of 980 strains of acid-producing bacteria were isolated from cattle rumen contents using a medium supplemented with bromocresol green. Combined with the test of acid production ability and 16S rRNA amplicon sequencing technology, five strains were selected based on their ability to produce relatively high levels of acid, including Bacillus pumillus, Enterococcus hirae, Enterococcus faecium, and Bacillus subtilis. Sheep were treated by gavage with a mixed bacterial suspension. The results showed that mixed bacteria significantly increased the body weight gain and feed conversion rate of sheep. To investigate the function of acid-producing bacteria in sheep, we used 16S rDNA sequencing technology to analyze the rumen microbes of sheep. We found that mixed bacteria changed the composition and abundance of sheep rumen bacteria. Among them, the abundance of Bacteroidota, Actinobacteriota, Acidobacteriota, and Proteobacteria was significantly increased, and the abundance of Firmicutes was significantly decreased, indicating that the changes in gut microbiota changed the function of the sheep rumen. The acid-producing bacteria isolated in this study can effectively promote the growth of ruminants, such as cattle and sheep, and can be used as additives to improve breeding efficiency, which lays a foundation for subsequent research on probiotics.
Collapse
Affiliation(s)
- Jinming Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
4
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
5
|
Werner M, Weeger J, Hörner-Schmid L, Weber K, Palić J, Shih J, Suchodolski JS, Pilla R, Schulz B. Comparison of the respiratory bacterial microbiome in cats with feline asthma and chronic bronchitis. Front Vet Sci 2023; 10:1148849. [PMID: 37051512 PMCID: PMC10083293 DOI: 10.3389/fvets.2023.1148849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Objectives While feline chronic bronchitis (CB) is known as neutrophilic bronchial inflammation (NI), feline asthma (FA) is defined as an eosinophilic airway inflammation (EI). Feline chronic bronchial disease refers to both syndromes, with similar clinical presentations and applied treatment strategies. Recent studies described alterations of the microbiota composition in cats with FA, but little is known about the comparison of the lung microbiota between different types of feline bronchial disease. The study aimed to describe the bacterial microbiota of the lower respiratory tracts of cats with FA and CB and to identify potential differences. Methods Twenty-two client-owned cats with FA (n = 15) or CB (n = 7) confirmed via bronchoalveolar-lavage (BALF)-cytology were included. Next-generation sequencing analysis of 16S rRNA genes was performed on bacterial DNA derived from BALF samples. QIIME was used to compare microbial composition and diversity between groups. Results Evenness and alpha-diversity-indices did not significantly differ between cats with FA and CB (Shannon p = 0.084, Chao 1 p = 0.698, observed ASVs p = 0.944). Based on a PERMANOVA analysis, no significant differences were observed in microbial composition between animals of both groups (Bray-Curtis metric, R-value 0.086, p = 0.785; unweighted UniFrac metric, R-value -0.089, p = 0.799; weighted Unifrac metric, R-value -0.072, p = 0.823). Regarding taxonomic composition, significant differences were detected for Actinobacteria on the phylum level (p = 0.026), Mycoplasma spp. (p = 0.048), and Acinetobacteria (p = 0.049) on the genus level between cats with FA and CB, with generally strong interindividual differences seen. There was a significant difference in the duration of clinical signs before diagnosis in animals dominated by Bacteriodetes (median 12 months, range 2-58 months) compared to animals dominated by Proteobacteria (median 1 month, range 1 day to 18 months; p = 0.003). Conclusions and relevance Lung microbiota composition is very similar in cat populations with spontaneous FA and CB besides small differences in some bacterial groups. However, with disease progression, the lung microbiome of cats with both diseases appears to shift away from dominantly Proteobacteria to a pattern more dominated by Bacteriodetes. A substantial proportion of cats tested positive for Mycoplasma spp. via sequencing, while none of them tested positive using classical PCR.
Collapse
Affiliation(s)
- Melanie Werner
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Zurich, Switzerland
| | - Jasmin Weeger
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Lina Hörner-Schmid
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Karin Weber
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| | - Jelena Palić
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Kornwestheim, Germany
| | - Jonathan Shih
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Bianka Schulz
- Clinic of Small Animal Internal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
6
|
Vientós-Plotts AI, Ericsson AC, McAdams ZL, Rindt H, Reinero CR. Respiratory dysbiosis in cats with spontaneous allergic asthma. Front Vet Sci 2022; 9:930385. [PMID: 36157187 PMCID: PMC9492960 DOI: 10.3389/fvets.2022.930385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022] Open
Abstract
Deviations from a core airway microbiota have been associated with the development and progression of asthma as well as disease severity. Pet cats represent a large animal model for allergic asthma, as they spontaneously develop a disease similar to atopic childhood asthma. This study aimed to describe the lower airway microbiota of asthmatic pet cats and compare it to healthy cats to document respiratory dysbiosis occurring with airway inflammation. We hypothesized that asthmatic cats would have lower airway dysbiosis characterized by a decrease in richness, diversity, and alterations in microbial community composition including identification of possible pathobionts. In the current study, a significant difference in airway microbiota composition was documented between spontaneously asthmatic pet cats and healthy research cats mirroring the finding of dysbiosis in asthmatic humans. Filobacterium and Acinetobacter spp. were identified as predominant taxa in asthmatic cats without documented infection based on standard culture and could represent pathobionts in the lower airways of cats. Mycoplasma felis, a known lower airway pathogen of cats, was identified in 35% of asthmatic but not healthy cats. This article has been published alongside "Temporal changes of the respiratory microbiota as cats transition from health to experimental acute and chronic allergic asthma" (1).
Collapse
Affiliation(s)
- Aida I. Vientós-Plotts
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Aaron C. Ericsson
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Zachary L. McAdams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Hansjorg Rindt
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Carol R. Reinero
- College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Comparative Internal Medicine Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|