1
|
Shen YF, Arruda AG, Koscielny MP, Cheng TY. Contrasting PRRSV temporal lineage patterns at the individual farm, production system, and regional levels in Ohio and neighboring states from 2017 to 2021. Prev Vet Med 2024; 226:106186. [PMID: 38518657 DOI: 10.1016/j.prevetmed.2024.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Porcine reproductive and respiratory virus (PRRSV), one of the most significant viruses in the swine industry, has been challenging to control due to its high mutation and recombination rates and complexity. This retrospective study aimed to describe and compare the distribution of PRRSV lineages obtained at the individual farm, production system, and regional levels. PRRSV-2 (type 2) sequences (n = 482) identified between 2017 - 2021 were provided by a regional state laboratory (Ohio Department of Agriculture, Animal Disease Diagnostic Center (ODA-ADDL)) collected from swine farms in Ohio and neighboring states, including Indiana, Michigan, Pennsylvania, and West Virginia. Additional sequences (n = 138) were provided by one collaborating swine production system. The MUSCLE algorithm on Geneious Prime® was used to align the ORF5 region of PRRSV-2 sequences along with PRRSV live attenuated vaccine strains (n = 6) and lineage anchors (n = 169). Sequenced PRRSV-2 were assigned to the most identical lineage anchors/vaccine strains. Among all sequences (n = 620), 29.8% (185/620) were ≥ 98.0% identity with the vaccine strains, where 93.5% (173/185) and 6.5% (12/185) were identical with the L5 Ingelvac PRRS® MLV and L8 Fostera® PRRS vaccine strains, respectively, and excluded from the analysis. At the regional level across five years, the top five most identified lineages included L1A, L5, L1H, L1C, and L8. Among non-vaccine sequences with production system known, L1A sequences were mostly identified (64.3% - 100.0%) in five systems, followed by L1H (0.0% - 28.6%), L1C (0.0% - 10.5%), L5 (0.0% - 14.4%), L8 (0.0% - 1.3%), and L1F (0.0% - 0.5%). Furthermore, among non-vaccine sequences with the premise identification available (n = 262), the majority of sequences from five individual farms were either classified into L1A or L5. L1A and L5 sequences coexisted in three farms, while samples submitted by one farm contained L1A, L1H, and L5 sequences. Additionally, the lineage classification results of non-vaccine sequences were associated with their restriction fragment length polymorphism (RFLP) patterns (Fisher's exact test, p < 0.05). Overall, our results show that individual farm and production system-level PRRSV-2 lineage patterns do not necessarily correspond to regional-level patterns, highlighting the influence of individual farms and systems in shaping PRRSV occurrence within those levels, and highlighting the crucial goal of within-farm and system monitoring and early detection for accurate knowledge on PRRSV-2 lineage occurrence and emergence.
Collapse
Affiliation(s)
- Yi-Fan Shen
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Osemeke OH, Cezar GA, Paiva RC, Moraes DCA, Machado IF, Magalhaes ES, Poeta Silva APS, Mil-Homens M, Peng L, Jayaraman S, Trevisan G, Silva GS, Gauger PC, Linhares DCL. A cross-sectional assessment of PRRSV nucleic acid detection by RT-qPCR in serum, ear-vein blood swabs, nasal swabs, and oral swabs from weaning-age pigs under field conditions. Front Vet Sci 2023; 10:1200376. [PMID: 37635762 PMCID: PMC10449646 DOI: 10.3389/fvets.2023.1200376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.
Collapse
Affiliation(s)
| | - Guilherme A. Cezar
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Rodrigo C. Paiva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Daniel C. A. Moraes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Isadora F. Machado
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Edison S. Magalhaes
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | | | - Mafalda Mil-Homens
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Li Peng
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Swaminathan Jayaraman
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Giovani Trevisan
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Gustavo S. Silva
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Phillip C. Gauger
- Veterinary Diagnostic and Production Animal Medicine Department of the College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Daniel C. L. Linhares
- Fieldepi, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| |
Collapse
|