1
|
Euppayo T, Siengdee P, Limlenglert P, Nganvongpanit K, Watanabe G, Kasashima Y, Arai K. In vitro model of equine cartilage degradation; using cartilage pellets differentiated from bone marrow-derived mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01049-8. [PMID: 40425901 DOI: 10.1007/s11626-025-01049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
The self-renewal capacity of chondrocytes in osteoarthritis (OA) joints is limited, and mesenchymal stem cells (MSCs) are crucial in disease treatment. This study established an OA model from equine bone marrow-derived mesenchymal stem cells (eBMSCs). The eBMSCs were cultured and differentiated into chondrocytes to generate cartilage pellets, which were induced for 7 d with inflammatory cytokines, interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) to mimic OA conditions. Treated culture medium was collected to estimate enzyme activity (MMP-2, MMP-3, and MMP-9) using zymography, and the cartilage pellets were collected to estimate both anabolic gene (COL2A1) and catabolic gene expression (MMP2, MMP3, and MMP9) using qRT-PCR. Cartilage degradation was observed when induced with IL-1β + TNF-α on cartilage pellets. IL-1β + TNF-α decreased the expression levels of COL2A1 and MMP2 genes, and enhanced their enzymatic activities, while Alcian blue-positive glycosaminoglycan in cartilage pellets induced by IL-1β + TNF-α groups decreased. These results suggested that IL-1β + TNF-α induced on cartilage pellets from eBMSCs could be used as an in vitro OA model in horses.
Collapse
Affiliation(s)
- Thippaporn Euppayo
- Faculty of Veterinary Medicine, Maejo University, Chiang Mai, 50300, Thailand.
| | - Puntita Siengdee
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Pakorn Limlenglert
- Faculty of Veterinary Medicine, Maejo University, Chiang Mai, 50300, Thailand
| | | | - Gen Watanabe
- Laboratory of Veterinary Reproduction, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Yoshinori Kasashima
- Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | - Katsuhiko Arai
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| |
Collapse
|
2
|
Luque RM, Henderson B, McCorkell TC, Alizadeh AH, Russell KA, Koch TG, Koenig J. Treatment outcomes for equine osteoarthritis with mesenchymal stromal cells and hyaluronic acid. Equine Vet J 2025. [PMID: 40364589 DOI: 10.1111/evj.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are widely used to treat osteoarthritis (OA). Optimising dose, timing, and safety while comparing efficacy with standard therapies like hyaluronic acid (HA) is essential for their standardisation. OBJECTIVES To assess the safety and efficacy of equine umbilical cord-derived (eCB) MSCs in client-owned horses with fetlock or carpus OA. STUDY DESIGN Prospective single-blinded randomised clinical study. METHODS Horses diagnosed with fetlock or carpus OA via intra-articular (IA) anaesthesia were randomly assigned to receive either 10 or 20 million eCB-MSCs in HA or 3 mL of HA alone (control). Subjective lameness examinations were performed at baseline, 3 weeks, and 6 weeks post-treatment. Adverse reactions were evaluated 24-72 h post-injection. Follow-up surveys were sent to owners at 18 weeks. RESULTS Twenty-seven client-owned horses were enrolled. No significant adverse reactions occurred. Lameness outcomes did not differ significantly between treatment groups at 3 or 6 weeks (p > 0.05), though all groups showed improvement over time (p < 0.05). Median lameness change at 6 weeks was -1.5 (0.5) grades for HA, -2.0 (1.0) for 10-MSC + HA, and -2.0 (1.0) for 20-MSC + HA. Although return-to-work rates were not significantly different (p > 0.05), both MSC + HA groups had higher return rates to the same or higher work levels than HA-only (8 out of 9, 7 out of 9, and 5 out of 9, respectively). MAIN LIMITATIONS Small sample size. CONCLUSIONS The study aimed to assess MSC treatment safety and efficacy. Higher return-to-exercise rates were expected in the MSC groups at 18 weeks, but unexpectedly high rates in the HA group may have led to underpowering. A post hoc calculation suggests 30 horses per group would be needed to detect significant differences.
Collapse
Affiliation(s)
- Rodrigo Munevar Luque
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Bri Henderson
- Rivendell Equine Veterinary Services, Grand Valley, Ontario, Canada
| | | | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Judith Koenig
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Shi L, Khan MZ, Ullah A, Liang H, Geng M, Akhtar MF, Na J, Han Y, Wang C. Advancements in Stem Cell Applications for Livestock Research: A Review. Vet Sci 2025; 12:397. [PMID: 40431490 PMCID: PMC12115878 DOI: 10.3390/vetsci12050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Stem cells (SCs), distinguished by their capacity for self-renewal and multipotent differentiation, represent a cornerstone of regenerative medicine. These cells, which can be categorized according to their differentiation potential and developmental origin, have emerged as pivotal elements in both biomedical research and veterinary science. In herbivorous species, stem cell applications have yielded particularly promising advances across multiple domains, including reproductive biotechnology, tissue engineering and regeneration, therapeutic interventions, and immunomodulation. This review synthesizes contemporary research on stem cell biology in five economically significant herbivorous species: bovine, ovine, deer, equine, and camelid. Special emphasis is placed on stem cell isolation methodologies, culture optimization techniques, and the molecular mechanisms governing key signaling pathways. The discussion encompasses both the technical impediments facing stem cell research and the ethical framework necessary for responsible scientific advancement, with particular attention to animal welfare considerations in the development and implementation of stem cell-based technologies.
Collapse
Affiliation(s)
- Limeng Shi
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Abd Ullah
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Mingyang Geng
- Yili Kazak Autonomous Prefecture Livestock General Station, Xinjiang Autonomous Region, Yili 835000, China
| | - Muhammad Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Jincheng Na
- Yili Kazak Autonomous Prefecture Livestock General Station, Xinjiang Autonomous Region, Yili 835000, China
| | - Ying Han
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China (M.Z.K.)
| |
Collapse
|
4
|
Morawska-Kozłowska M, Pitas M, Zhalniarovich Y. Mesenchymal Stem Cells in Veterinary Medicine-Still Untapped Potential. Animals (Basel) 2025; 15:1175. [PMID: 40282009 PMCID: PMC12024326 DOI: 10.3390/ani15081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold significant therapeutic potential in veterinary medicine due to their regenerative and immunomodulatory properties. This review examines the clinical applications of MSCs across multiple animal species, including equine, canine, feline, and bovine medicine. MSC therapies have demonstrated promising outcomes in treating musculoskeletal disorders, osteoarthritis, inflammatory diseases, and tissue injuries, particularly in horses and dogs. In cats, MSCs show potential for managing chronic kidney disease, inflammatory bowel disease, and asthma, while in bovine medicine, they offer alternative treatment approaches for mastitis and orthopedic injuries. Despite these advancements, challenges such as treatment standardization, cell sourcing, and potential adverse effects, including tumorigenicity, remain under investigation. The emerging field of MSC-based veterinary medicine highlights its capacity to enhance healing, reduce inflammation, and improve clinical outcomes. However, further research is necessary to optimize treatment protocols and address safety concerns, ensuring the widespread adoption of MSC therapies in veterinary practice.
Collapse
Affiliation(s)
- Magdalena Morawska-Kozłowska
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mateusz Pitas
- Veterinary Polyclinic, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Yauheni Zhalniarovich
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
5
|
Patel AA, Shafie A, Mohamed AH, Ali SAJ, Tayeb FJ, Waggiallah HA, Ahmad I, Sheweita SA, Muzammil K, AlShahrani AM, Al Abdulmonem W. The promise of mesenchymal stromal/stem cells in erectile dysfunction treatment: a review of current insights and future directions. Stem Cell Res Ther 2025; 16:98. [PMID: 40012076 PMCID: PMC11866689 DOI: 10.1186/s13287-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Erectile dysfunction is a common and multifactorial condition that significantly impacts men's quality of life. Traditional treatments, such as phosphodiesterase type 5 inhibitors (PDE5i), often fail to provide lasting benefits, particularly in patients with underlying health conditions. In recent years, regenerative medicine, particularly stem cell therapies, has emerged as a promising alternative for managing erectile dysfunction. This review explores the potential of mesenchymal stromal/stem cells (MSCs) and their paracrine effects, including extracellular vesicles (EVs), in the treatment of erectile dysfunction. MSCs have shown remarkable potential in promoting tissue repair, reducing inflammation, and regenerating smooth muscle cells, offering therapeutic benefits in models of erectile dysfunction. Clinical trials have demonstrated positive outcomes in improving erectile function and other clinical parameters. This review highlights the promise of MSC therapy for erectile dysfunction, discusses existing challenges, and emphasizes the need for continued research to refine these therapies and improve long-term patient outcomes.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | | | - Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Salah Ahmed Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, 62561, Abha, Saudi Arabia
| | - Abdullah M AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait, King Khalid University (KKU), 62561, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
7
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
8
|
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R, Galéra P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int J Mol Sci 2023; 24:14169. [PMID: 37762473 PMCID: PMC10531906 DOI: 10.3390/ijms241814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is a widespread osteoarticular pathology characterized by progressive hyaline cartilage degradation, exposing horses to impaired well-being, premature career termination, alongside substantial financial losses for horse owners. Among the new therapeutic strategies for OA, using mesenchymal stromal cell (MSC)-derived exosomes (MSC-exos) appears to be a promising option for conveying MSC therapeutic potential, yet avoiding the limitations inherent to cell therapy. Here, we first purified and characterized exosomes from MSCs by membrane affinity capture (MAC) and size-exclusion chromatography (SEC). We showed that intact MSC-exos are indeed internalized by equine articular chondrocytes (eACs), and then evaluated their functionality on cartilaginous organoids. Compared to SEC, mRNA and protein expression profiles revealed that MAC-exos induced a greater improvement of eAC-neosynthesized hyaline-like matrix by modulating collagen levels, increasing PCNA, and decreasing Htra1 synthesis. However, because the MAC elution buffer induced unexpected effects on eACs, an ultrafiltration step was included to the isolation protocol. Finally, exosomes from MSCs primed with equine pro-inflammatory cytokines (IL-1β, TNF-α, or IFN-γ) further improved the eAC hyaline-like phenotype, particularly IL-1β and TNF-α. Altogether, these findings indicate the importance of the exosome purification method and further demonstrate the potential of pro-inflammatory priming in the enhancement of the therapeutic value of MSC-exos for equine OA treatment.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Frédéric Cassé
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Emilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, 14430 Goustranville, France;
| | - Romain Contentin
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Philippe Galéra
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| |
Collapse
|
9
|
Jammes M, Contentin R, Audigié F, Cassé F, Galéra P. Effect of pro-inflammatory cytokine priming and storage temperature of the mesenchymal stromal cell (MSC) secretome on equine articular chondrocytes. Front Bioeng Biotechnol 2023; 11:1204737. [PMID: 37720315 PMCID: PMC10502223 DOI: 10.3389/fbioe.2023.1204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Context: Osteoarthritis (OA) is an invalidating articular disease characterized by cartilage degradation and inflammatory events. In horses, OA is associated with up to 60% of lameness and leads to reduced animal welfare along with extensive economic losses; currently, there are no curative therapies to treat OA. The mesenchymal stromal cell (MSC) secretome exhibits anti-inflammatory properties, making it an attractive candidate for improving the management of OA. In this study, we determined the best storage conditions for conditioned media (CMs) and tested whether priming MSCs with cytokines can enhance the properties of the MSC secretome. Methods: First, properties of CMs collected from bone-marrow MSC cultures and stored at -80°C, -20°C, 4°C, 20°C or 37°C were assessed on 3D cultures of equine articular chondrocytes (eACs). Second, we primed MSCs with IL-1β, TNF-α or IFN-γ, and evaluated the MSC transcript levels of immunomodulatory effectors and growth factors. The primed CMs were also harvested for subsequent treatment of eACs, either cultured in monolayers or as 3D cell cultures. Finally, we evaluated the effect of CMs on the proliferation and the phenotype of eACs and the quality of the extracellular matrix of the neosynthesized cartilage. Results: CM storage at -80°C, -20°C, and 4°C improved collagen protein accumulation, cell proliferation and the downregulation of inflammation. The three cytokines chosen for the MSC priming influenced MSC immunomodulator gene expression, although each cytokine led to a different pattern of MSC immunomodulation. The cytokine-primed CM had no major effect on eAC proliferation, with IL-1β and TNF-α slightly increasing collagen (types IIB and I) accumulation in eAC 3D cultures (particularly with the CM derived from MSCs primed with IL-1β), and IFN-γ leading to a marked decrease. IL-1β-primed CMs resulted in increased eAC transcript levels of MMP1, MMP13 and HTRA1, whereas IFNγ-primed CMs decreased the levels of HTRA1 and MMP13. Conclusion: Although the three cytokines differentially affected the expression of immunomodulatory molecules, primed CMs induced a distinct effect on eACs according to the cytokine used for MSC priming. Different mechanisms seemed to be triggered by each priming cytokine, highlighting the need for further investigation. Nevertheless, this study demonstrates the potential of MSC-CMs for improving equine OA management.
Collapse
Affiliation(s)
- Manon Jammes
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | | | - Fabrice Audigié
- Unit Under Contract 957 Equine Biomechanics and Locomotor Disorders (USC 957 BPLC), Center of Imaging and Research on Locomotor Affections on Equines (CIRALE), French National Research Institute for Agriculture Food and Environment (INRAE), École Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | | | | |
Collapse
|
10
|
Canonici F, Cocumelli C, Cersini A, Marcoccia D, Zepparoni A, Altigeri A, Caciolo D, Roncoroni C, Monteleone V, Innocenzi E, Alimonti C, Ghisellini P, Rando C, Pechkova E, Eggenhöffner R, Scicluna MT, Barbaro K. Articular Cartilage Regeneration by Hyaline Chondrocytes: A Case Study in Equine Model and Outcomes. Biomedicines 2023; 11:1602. [PMID: 37371697 DOI: 10.3390/biomedicines11061602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cartilage injury defects in animals and humans result in the development of osteoarthritis and the progression of joint deterioration. Cell isolation from equine hyaline cartilage and evaluation of their ability to repair equine joint cartilage injuries establish a new experimental protocol for an alternative approach to osteochondral lesions treatment. Chondrocytes (CCs), isolated from the autologous cartilage of the trachea, grown in the laboratory, and subsequently arthroscopically implanted into the lesion site, were used to regenerate a chondral lesion of the carpal joint of a horse. Biopsies of the treated cartilage taken after 8 and 13 months of implantation for histological and immunohistochemical evaluation of the tissue demonstrate that the tissue was still immature 8 months after implantation, while at 13 months it was organized almost similarly to the original hyaline cartilage. Finally, a tissue perfectly comparable to native articular cartilage was detected 24 months after implantation. Histological investigations demonstrate the progressive maturation of the hyaline cartilage at the site of the lesion. The hyaline type of tracheal cartilage, used as a source of CCs, allows for the repair of joint cartilage injuries through the neosynthesis of hyaline cartilage that presents characteristics identical to the articular cartilage of the original tissue.
Collapse
Affiliation(s)
- Fernando Canonici
- Equine Practice s.r.l., Campagnano, Strada Valle del Baccano 80, 00063 Rome, Italy
| | - Cristiano Cocumelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Alessia Zepparoni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Annalisa Altigeri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristina Roncoroni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Valentina Monteleone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Elisa Innocenzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Paola Ghisellini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Cristina Rando
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Eugenia Pechkova
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- Consorzio Interuniversitario INBB, Viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| |
Collapse
|