1
|
Moel M, Harinath G, Lee V, Nyquist A, Morgan SL, Isman A, Zalzala S. Influence of rapamycin on safety and healthspan metrics after one year: PEARL trial results. Aging (Albany NY) 2025; 17:908-936. [PMID: 40188830 PMCID: PMC12074816 DOI: 10.18632/aging.206235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
DESIGN This 48-week decentralized, double-blinded, randomized, placebo-controlled trial (NCT04488601) evaluated the long-term safety of intermittent low-dose rapamycin in a healthy, normative-aging human cohort. Participants received placebo, 5 mg or 10 mg compounded rapamycin weekly. The primary outcome measure was visceral adiposity (by DXA scan), secondary outcomes were blood biomarkers, and lean tissue and bone mineral content (by DXA scan). Established surveys were utilized to evaluate health and well-being. Safety was assessed through adverse events and blood biomarker monitoring. RESULTS Adverse and serious adverse events were similar across all groups. Visceral adiposity did not change significantly (ηp2 = 0.001, p = 0.942), and changes in blood biomarkers remained within normal ranges. Lean tissue mass (ηp2 = 0.202, p = 0.013) and self-reported pain (ηp2 = 0.168, p = 0.015) improved significantly for women using 10 mg rapamycin. Self-reported emotional well-being (ηp2 = 0.108, p = 0.023) and general health (ηp2 = 0.166, p = 0.004) also improved for those using 5 mg rapamycin. No other significant effects were observed. CONCLUSIONS Low-dose, intermittent rapamycin administration over 48 weeks is relatively safe in healthy, normative-aging adults, and was associated with significant improvements in lean tissue mass and pain in women. Future work will evaluate benefits of a broader range of rapamycin doses on healthspan metrics for longevity, and will aim to more comprehensively establish efficacy.
Collapse
Affiliation(s)
- Mauricio Moel
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | - Girish Harinath
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | - Virginia Lee
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | | | - Stefanie L. Morgan
- AgelessRx, Ann Arbor, MI 48104, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI 48104, USA
| | | | | |
Collapse
|
2
|
Coleman AE, Creevy KE, Anderson R, Reed MJ, Fajt VR, Aicher KM, Atiee G, Barnett BG, Baumwart RD, Boudreau B, Cunningham SM, Dunbar MD, Ditzler B, Ferguson AM, Forsyth KK, Gambino AN, Gordon SG, Hammond HK, Holland SN, Iannaccone MK, Illing K, Kadotani S, Knowles SA, MacLean EL, Maran BA, Markovic LE, McGrath S, Melvin RL, Mueller MS, Nelson OL, Olby NJ, Pancotto TE, Parsley E, Potter BM, Prescott JO, Saunders AB, Sawyer HM, Scansen BA, Schmid SM, Smith CC, Tjostheim SS, Tolbert MK, Tropf MA, Visser LC, Ward JL, Wesselowski SR, Windsor RC, Yang VK, Ruple A, Promislow DEL, Kaeberlein M. Test of Rapamycin in Aging Dogs (TRIAD): study design and rationale for a prospective, parallel-group, double-masked, randomized, placebo-controlled, multicenter trial of rapamycin in healthy middle-aged dogs from the Dog Aging Project. GeroScience 2025:10.1007/s11357-024-01484-7. [PMID: 39951177 DOI: 10.1007/s11357-024-01484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/14/2024] [Indexed: 02/25/2025] Open
Abstract
Companion dogs are a powerful model for aging research given their morphologic and genetic variability, risk for age-related disease, and habitation of the human environment. In addition, the shorter life expectancy of dogs compared to human beings provides a unique opportunity for an accelerated timeline to test interventions that might extend healthy lifespan. The Test of Rapamycin In Aging Dogs (TRIAD) randomized clinical trial is a parallel-group, double-masked, randomized, placebo-controlled, multicenter trial that will test the ability of rapamycin to prolong lifespan and improve several healthspan metrics in healthy, middle-aged dogs recruited from Dog Aging Project participants. Here, we describe the rationale, design, and goals of the TRIAD randomized clinical trial, the first rigorous test of a pharmacologic intervention against biological aging with lifespan and healthspan metrics as endpoints to be performed outside of the laboratory in any species.
Collapse
Affiliation(s)
- Amanda E Coleman
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA.
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Rozalyn Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- GRECC William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - May J Reed
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Virginia R Fajt
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Kathleen M Aicher
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Genna Atiee
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Brian G Barnett
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ryan D Baumwart
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| | - Beth Boudreau
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Matthew D Dunbar
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Bobbie Ditzler
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Anna M Ferguson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kiersten K Forsyth
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Anya N Gambino
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sonya G Gordon
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Hillary K Hammond
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA
| | - Sydney N Holland
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Mary K Iannaccone
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kate Illing
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Saki Kadotani
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Shelby A Knowles
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Evan L MacLean
- College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Lauren E Markovic
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Rachel L Melvin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - O Lynne Nelson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Elizabeth Parsley
- Department of Clinical Sciences, Tufts University, North Grafton, MA, USA
| | - Brianna M Potter
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jena O Prescott
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ashley B Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Brian A Scansen
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah M Schmid
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Sonja S Tjostheim
- Department of Medical Sciences, University of Wisconsin, Madison, WI, USA
| | - M Katherine Tolbert
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Melissa A Tropf
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Lance C Visser
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica L Ward
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Sonya R Wesselowski
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Vicky K Yang
- Department of Clinical Sciences, Tufts University, North Grafton, MA, USA
| | - Audrey Ruple
- Department of Population and Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Daniel E L Promislow
- Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, Boston, MA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Optispan, Inc, Seattle, WA, USA
| |
Collapse
|
3
|
Grzeczka A, Graczyk S, Kordowitzki P. Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model. GeroScience 2025:10.1007/s11357-025-01520-0. [PMID: 39865135 DOI: 10.1007/s11357-025-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment. This senescence-associated secretory phenotype can promote tissue dysfunction and remodeling, ultimately leading to the development of age-related cardiovascular pathologies, such as mitral valve myxomatous degeneration. The species-specific form of canine myxomatous mitral valve disease (MMVD) provides a unique opportunity to investigate the early causes of induction of ECM remodeling in mitral valve leaflets in the human form of MMVD. Studies have shown that in both humans and dogs, the microenvironment of the altered leaflets is inflammatory. More recently, the focus has been on the mechanisms leading to the transformation of resting VICs (qVICs) to myofibroblast-like VICs (aVICs). Cells affected by stress fall into a state of cell cycle arrest and become senescent cells. aVICs, under the influence of TGF-β signaling pathways and the mTOR complex, enhance ECM alteration and accumulation of systemic inflammation. This review aims to create a fresh new view of the complex interaction between aging, inflammation, immunosenescence, and MMVD in a canine model, as the domestic dog is a promising model of human aging and age-related diseases.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Pawel Kordowitzki
- Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.
| |
Collapse
|
4
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Dog Aging Project Consortium, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
Affiliation(s)
- Benjamin R. Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Partida-Aguilar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Abbey Marye
- University of Utah, Department of Microbiology and Immunology, Salt Lake City, UT, USA
| | - Danijel Djukovic
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Mandy Kauffman
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Matthew D. Dunbar
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | | | - Brianah M. McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yadid M. Algavi
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Baum
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Tal Bamberger
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Dan Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Anne Avery
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO, USA
| | - Elhanan Borenstein
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel E. Promislow
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
5
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Evans JB, Chou L, Kaeberlein M, Promislow DE, Creevy KE. Case report: Severe asymptomatic hypertriglyceridemia associated with long-term low-dose rapamycin administration in a healthy middle-aged Labrador retriever. Front Vet Sci 2023; 10:1285498. [PMID: 38094495 PMCID: PMC10716302 DOI: 10.3389/fvets.2023.1285498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 02/01/2024] Open
Abstract
Rapamycin is an mTOR inhibitor that has been shown to extend the lifespan of laboratory model organisms. In humans, rapamycin is used at higher doses as an immunosuppressive medication to prevent organ rejection. Numerous adverse effects are seen with rapamycin treatment in humans, with one of the most common being dysregulation of lipid metabolism. In humans, this often manifests as mild to moderate serum lipid elevations, with a small subset developing extreme triglyceride elevations. This case report describes an eight-year-old, castrated male, clinically healthy Labrador retriever who developed severe hypertriglyceridemia associated with low-dose rapamycin administration over a six-month period. During this time, the dog was asymptomatic and displayed no other clinical abnormalities, aside from a progressive lipemia. Within 15 days of discontinuing rapamycin treatment, and with no targeted lipemic intervention, the dog's lipemia and hypertriglyceridemia completely resolved.
Collapse
Affiliation(s)
- Jeremy B. Evans
- Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| | - Lucy Chou
- Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Optispan, Inc., Seattle, WA, United States
| | - Daniel E.L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|