1
|
Khlifi N, Ghabriche R, Ayachi I, Zorrig W, Ghnaya T. How does silicon alleviate Cd-induced phytotoxicity in barley, Hordeum vulgare L.? CHEMOSPHERE 2024; 362:142739. [PMID: 38969217 DOI: 10.1016/j.chemosphere.2024.142739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Toxic heavy metal accumulation in edible plants has become a problem worth worrying about for human health. Cadmium is one of the most toxic metals presenting high bioavailability in the environment. The main route of transfer of Cd to humans is the consumption of contaminated food which suggests that reducing of Cd absorption by plants could reduce this risk. In this context, it was suggested that silicon supply would be able to limit the transfer of Cd to the plants. Thus, this work evaluated the effects of 0.5 mM Si on Cd absorption and accumulation in barley (Hordeum vulgare L.). Plants were grown hydroponically for 21 days in the presence of 0 and 15 μM Cd2+ combined or not with 0.5 mM Si. Analyses were related to growth and photosynthesis parameters, Cd accumulation in organs and Cd subcellular distribution in the shoots. Results showed that, under Cd alone, plants showed severe toxicity symptoms as chlorosis and necrosis and produced significantly less biomass as compared to control. 0.5 mM Si in the medium culture significantly reduced Cd-induced toxicity by mitigating symptoms and restoring growth, photosynthesis, and nutrition. Si also induced a significant reduction of Cd concentration in plants and changed its sub-cellular compartmentalization by enhancing fixation to cell walls and reducing the Cd concentration in the cytoplasmic and organelles fractions. These data suggest that the application of Si could significantly increase Cd tolerance and reduce the risk of the Cd accumulation in edible plants.
Collapse
Affiliation(s)
- Nadia Khlifi
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Rim Ghabriche
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Imen Ayachi
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Walid Zorrig
- Laboratory of Extremophile Plants, Biotechnology Center of BorjCedria, BP 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Tahar Ghnaya
- Higher Institute of Arts and Crafts of Tataouine, University of Gabes, Rue OmarrEbenkhattab, 6029, Zerig-Gabes, Tunisia; Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-organisms, Institute of Arid Land, 4100, Medenine, University of Gabes Tunisia, Tunisia.
| |
Collapse
|
2
|
Miśkowiec P. The impact of the mountain barrier on the spread of heavy metal pollution on the example of Gorce Mountains, Southern Poland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:663. [PMID: 35948730 PMCID: PMC9365746 DOI: 10.1007/s10661-022-10316-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this study was to determine the content, mobility, and the variability of concentration of zinc, lead, and cadmium in soils from the Gorce Mountains (south Poland), located over 100 km south-east from the potential industrial sources of contamination-zinc-lead sulfide ore mine and smelter in Bukowno, as well as hard coal mines of Silesia region and Kraków Nowa-Huta steelwork. The abovementioned problem is crucial in the context of the traditional mountain farming still extant in the region, as well as intensively developing tourism. The geoaccumulation index and potential ecological risk index were adopted to evaluate soil pollution in the study area and the BCR sequential extraction technique to assess mobility of the abovementioned elements. The obtained results clearly show that the pollution from distant industrial sources in the mountains is detectable. Apart from the increased concentrations of the tested metals in the soil (especially available forms), there is also a strong correlation between the concentrations of lead, zinc, and cadmium, which proves their common source of origin. The main evidence is the fact that differences in the concentrations of the tested metals on the windward and leeward sides were statistically significant. This also means that the studied mountain area, despite relatively low altitudes (up to 1310 m above sea level), constitutes a measurable barrier to the spread of atmospheric pollutants.
Collapse
Affiliation(s)
- Paweł Miśkowiec
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| |
Collapse
|
3
|
Hechmi S, Hamdi H, Mokni-Tlili S, Zoghlami RI, Khelil MN, Jellali S, Benzarti S, Jedidi N. Variation of soil properties with sampling depth in two different light-textured soils after repeated applications of urban sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113355. [PMID: 34375225 DOI: 10.1016/j.jenvman.2021.113355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Semi-arid agricultural soils have increasingly been subjected to urban sewage sludge (USS) applications due to accelerated soil depletion and shortages in manure supply. Research studies addressing USS reuse have mostly been conducted in cropping systems and focused on changes in topsoil properties of a given texture. Therefore, sludge-soil interactions could be largely influenced by the presence of plants, soil particle composition and depth. In this field study, two agricultural soils (sandy, S and sandy loam, SL) received simultaneously four annual USS applications of 40, 80, and 120 t ha-1 year-1 in absence of vegetation. Outcomes showed the increase of carbon and macronutrients in both soils proportionally to USS dose especially in the topsoil profile (0-20 cm). Subsoil (20-40 cm) was similarly influenced by sludge rates, showing comparable variations of fertility parameters though at significant lower levels. The depth-dependent improvement of soil fertility in both layers enhanced the microbiological properties accordingly, with significant variations in soil SL characterized by a higher clay content than soil S. Besides, positive correlations between increases in sludge dose, salinity, trace metals, and enzyme activities in both soils indicate that excessive sludge doses did not cause soil degradation or biotoxic effects under the described experimental conditions. In particular and despite high geoaccumulation indices of Ni in both soils and profiles, the global concentrations of Cu, Ni, Pb, and Zn were still below threshold levels for contaminated soils. In addition, the maintenance of pH values within neutral range and the increase of organic matter content with respect to control would have further reduced metal availability in amended soils. Therefore, we could closely investigate the effects of texture and depth on the intrinsic resilience of each soil to cope with repetitive USS applications.
Collapse
Affiliation(s)
- Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | - Helmi Hamdi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| | | | - Mohamed Naceur Khelil
- National Institute for Research in Rural Engineering, Water and Forestry, P.O. Box 10, Ariana, 2080, Tunisia
| | - Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, P.O. Box 31, Al-Khoud 123, Muscat, Oman
| | - Saoussen Benzarti
- Lusail University, P.O. Box 9717, Jabal Thuaileb, Lusail City, Doha, Qatar
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, Soliman, 8020, Tunisia
| |
Collapse
|
4
|
Ayachi I, Ghabriche R, Kourouma Y, Ben Naceur M, Abdelly C, Thomine S, Ghnaya T. Cd tolerance and accumulation in barley: screening of 36 North African cultivars on Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42722-42736. [PMID: 33821443 DOI: 10.1007/s11356-021-13768-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
In North Africa, barley (Hordeum vulgare L) is the second most cultivated cereal. In Tunisia, barley is cultivated in mining areas with possible Cd soil contamination. The accumulation of Cd was studied in the 36 most cultivated North African barley cultivars cultured during 6 months on control soil and on soil containing 10 ppm of Cd. Cadmium did not affect germination and morphology in any cultivar. However, Cd induced variable effects on the biomass according to the cultivar. The cultivar Lemsi was the most sensitive one and Gisa 127 the most tolerant to Cd. The spike morphology did not show any differences between control and Cd-treated plants. The number of grains per spike and the weight of kernels were differently affected by Cd. On this basis, we identified Manel, Temassine, Giza 130, and Firdaws as the most tolerant cultivars and Raihane, Giza 123, Adrar, and Amira as the most sensitive ones. Cd accumulated at a higher concentration in straw than in the grains, but for both organs, we observed a significant intraspecific variability. In the straw, Lemsi and Massine showed the highest Cd concentration, while the lowest concentration was recorded in Temassine. In the kernels, Amalou showed the highest Cd concentration, 14 μgg-1 of dry weight (DW), but the lowest Cd concentration was 1.7 μg g-1 DW in Kebelli. Based on the official allowable limit of Cd in the grain, all cultivars represent a potential risk when cultivated on soil contaminated with 10 ppm Cd. The molecular and physiological basis responsible for the differences in Cd tolerance and accumulation among barley cultivars will require more investigations.
Collapse
Affiliation(s)
- Imen Ayachi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Box 901, Hammam-Lif, 2050, Tunis, Tunisia
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Rim Ghabriche
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Box 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Yan Kourouma
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Box 901, Hammam-Lif, 2050, Tunis, Tunisia
| | - Sebastien Thomine
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Tahar Ghnaya
- Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, Box 901, Hammam-Lif, 2050, Tunis, Tunisia.
- Higher Institute of Arts and Crafts of Tataouine, University of Gabes, Rue OmarrEbenkhattab, 6029, Zerig-Gabes, Tunisia.
| |
Collapse
|