1
|
Zhao X, Shi Z, He F, Niu Y, Qi G, Sun S, Li X, Gao X. Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:7460. [PMID: 39000567 PMCID: PMC11242666 DOI: 10.3390/ijms25137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Xu X, Zhang C, Lai C, Zhang Z, Wu J, Su Q, Gan Y, Zhang Z, Chen Y, Guo R, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of Bx Involved in Benzoxazinoids Biosynthesis Revealed the Roles of DIMBOA during Early Somatic Embryogenesis in Dimocarpus longan Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1373. [PMID: 38794443 PMCID: PMC11125010 DOI: 10.3390/plants13101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (C.Z.); (C.L.); (Z.Z.); (J.W.); (Q.S.); (Y.G.); (Z.Z.); (Y.C.); (R.G.); (Y.L.)
| |
Collapse
|
3
|
Feng H, Wang Y, Li N, Qian Z, Chen T, Chen X, Wang Q, Zhu W. Effects of biochar pyrolysis temperature on uranium immobilization in soil remediation: Revealed by 16S rDNA and metabolomic analyses. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133502. [PMID: 38266586 DOI: 10.1016/j.jhazmat.2024.133502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Uranium-stressed soil caused by nuclear industry development and energy acquisition have attracted extensive attentions for a long time. This study investigated the effects of biochar application with different pyrolysis temperatures (300 ℃, 500 ℃ and 700 ℃) on remediation of uranium-stressed soil. The results showed that higher pyrolysis temperature (700 ℃) was benefit for ryegrass growing and caused a lower uranium accumulation in plants. At the same time, uranium immobilization was more effective at higher biochar pyrolysis temperature. Careful investigations indicated that activities of soil urease and sucrase were promoted, and bacterial diversity was strengthened in C700 group, which may contribute to uranium immobilization. The biochar application could activate metabolic of lipids and amino acids, organic acids and derivatives, and organic oxygen compounds. Nicotinate and nicotinamide metabolism, and Benzoxazinoid biosynthesis were unique metabolic pathways in the C700 group, which could enhance the uranium tolerance from different perspectives. Based on these results, we recommend to use biochar with 700 °C pyrolysis temperature when processing remediation of uranium-stressed soil. This study will facilitate the implementation of biochar screening and provide theoretical helps for remediation of uranium-stressed soil.
Collapse
Affiliation(s)
- Huachuan Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yilin Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Nan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Zishu Qian
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Tao Chen
- School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Chengdu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610000, China
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Chengdu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610000, China
| | - Qing Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Chengdu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610000, China.
| | - Wenkun Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Chengdu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610000, China.
| |
Collapse
|
4
|
Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. The transcription factor TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5634-5649. [PMID: 35554544 PMCID: PMC9467655 DOI: 10.1093/jxb/erac204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/10/2022] [Indexed: 05/13/2023]
Abstract
Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Samuel Bocobza
- Department of Ornamentals and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, 7528809, Rishon LeZion, Israel
| | | |
Collapse
|
5
|
Ikram A, Saeed F, Afzaal M, Abdullah M, Niaz B, Asif Khan M, Hussain M, Adnan Nasir A, Siddeeg A. Comparative study of biochemical properties, anti-nutritional profile, and antioxidant activity of newly developed rye variants. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2053708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ali Ikram
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Abdullah
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Bushra Niaz
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Asif Khan
- Department of Food Science & Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Adnan Adnan Nasir
- Department of Food and Nutritional Sciences, The University of Chenab Gujrat, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| |
Collapse
|
6
|
Sue M, Fujii M, Fujimaki T. Increased benzoxazinoid (Bx) levels in wheat seedlings via jasmonic acid treatment and etiolation and their effects on Bx genes including Bx6. Biochem Biophys Rep 2021; 27:101059. [PMID: 34195389 PMCID: PMC8220570 DOI: 10.1016/j.bbrep.2021.101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 10/29/2022] Open
Abstract
Wheat accumulates benzoxazinoid (Bx) as a defensive compound. While Bx occurs at high concentrations, particularly in the early growth stages, its mechanism of regulation remains unclear. In the present study, we first examined the effects of several plant hormones on Bx concentrations in wheat seedlings. Among the compounds tested, jasmonate (JA) elevated the concentrations of DIMBOA-Glc (2-β-D-glucoside of 2,4-dihydroxy-7-methoy-1,4-benzoxazin-3-one), the primary Bx species in intact wheat seedlings, without a significant increase in HDMBOA-Glc (4-O-methyl-DIMBOA-Glc), which is known to be upregulated by stresses. In addition, growing the plants in the dark increased DIMBOA-Glc levels. Quantification of the Bx-biosynthetic genes showed that TaBx8 (UDP-Glc:Bx glucosyltrasferase) was influenced by neither JA nor etiolation, indicating that TaBx8 is under the regulation mechanism distinct from the mechanisms influencing the others. In addition, none of the other gene expression patterns exhibited considerable correlation with DIMBOA-Glc accumulation. Since there was no correlation between transcript levels of the genes involved in Bx biosynthesis and Bx accumulation, other factors may control the levels of Bx in wheat. In the course of gene analyses, we isolated TaBx6, one of the last two genes that had not been identified in wheat in the DIMBOA-Glc biosynthetic pathway. All the four TaBx6 genes cloned in the present study were expressed in Escherichia coli and characterized their activity.
Collapse
Affiliation(s)
- Masayuki Sue
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Miha Fujii
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Takahiro Fujimaki
- Department of Agricultural Chemistry, Faculty of Applied Biosciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
7
|
Xu D, Xie Y, Guo H, Zeng W, Xiong H, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Transcriptome Analysis Reveals a Potential Role of Benzoxazinoid in Regulating Stem Elongation in the Wheat Mutant qd. Front Genet 2021; 12:623861. [PMID: 33633784 PMCID: PMC7900560 DOI: 10.3389/fgene.2021.623861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stems of cereal crops provide both mechanical support for lodging resistance and a nutrient supply for reproductive organs. Elongation, which is considered a critical phase for yield determination in winter wheat (Triticum aestivum L.), begins from the first node detectable to anthesis. Previously, we characterized a heavy ion beam triggered wheat mutant qd, which exhibited an altered stem elongation pattern without affecting mature plant height. In this study, we further analyzed mutant stem developmental characteristics by using transcriptome data. More than 40.87 Mb of clean reads including at least 36.61 Mb of unique mapped reads were obtained for each biological sample in this project. We utilized our transcriptome data to identify 124,971 genes. Among these genes, 4,340 differentially expressed genes (DEG) were identified between the qd and wild-type (WT) plants. Compared to their WT counterparts, qd plants expressed 2,462 DEGs with downregulated expression levels and 1878 DEGs with upregulated expression levels. Using DEXSeq, we identified 2,391 counting bins corresponding to 1,148 genes, and 289 of them were also found in the DEG analysis, demonstrating differences between qd and WT. The 5,199 differentially expressed genes between qd and WT were employed for GO and KEGG analyses. Biological processes, including protein-DNA complex subunit organization, protein-DNA complex assembly, nucleosome organization, nucleosome assembly, and chromatin assembly, were significantly enriched by GO analysis. However, only benzoxazinoid biosynthesis pathway-associated genes were enriched by KEGG analysis. Genes encoding the benzoxazinoid biosynthesis enzymes Bx1, Bx3, Bx4, Bx5, and Bx8_9 were confirmed to be differentially expressed between qd and WT. Our results suggest that benzoxazinoids could play critical roles in regulating the stem elongation phenotype of qd.
Collapse
Affiliation(s)
- Daxing Xu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Weiwei Zeng
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
8
|
Yu T, Zhang J, Cao J, Cai Q, Li X, Sun Y, Li S, Li Y, Hu G, Cao S, Liu C, Wang G, Wang L, Duan Y. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Genomics 2021; 113:782-794. [PMID: 33516847 DOI: 10.1016/j.ygeno.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Maize (Zea mays L.) is a thermophilic plant and a minor drop in temperature can prolong the maturity period. Plants respond to cold stress through structural and functional modification in cell membranes as well as changes in the photosynthesis and energy metabolism. In order to understand the molecular mechanisms underlying cold tolerance and adaptation, we employed leaf transcriptome sequencing together with leaf microstructure and relative electrical conductivity measurements in two maize inbred lines, having different cold stress tolerance potentials. The leaf physiological and transcriptomic responses of maize seedlings were studied after growing both inbred lines at 5 °C for 0, 12 and 24 h. Differentially expressed genes were enriched in photosynthesis antenna proteins, MAPK signaling pathway, plant hormone signal transduction, circadian rhythm, secondary metabolites related pathways, ribosome, and proteasome. The seedlings of both genotypes employed common stress responsive pathways to respond to cold stress. However, the cold tolerant line B144 protected its photosystem II from photooxidation by upregulating D1 proteins. The sensitive line Q319 was unable to close its stomata. Collectively, B144 exhibited a cold tolerance owing to its ability to mediate changes in stomata opening as well as protecting photosystem. These results increase our understanding on the cold stress tolerance in maize seedlings and propose multiple key regulators of stress responses such as modifications in photosystem II, stomata guard cell opening and closing, changes in secondary metabolite biosynthesis, and circadian rhythm. This study also presents the signal transduction related changes in MAPK and phytohormone signaling pathways in response to cold stress during seedling stage of maize.
Collapse
Affiliation(s)
- Tao Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jianguo Zhang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China; Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Jingsheng Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China.
| | - Quan Cai
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Xin Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yan Sun
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Sinan Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Yunlong Li
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Guanghui Hu
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Shiliang Cao
- Maize Research Institute of Heilongjiang Academy of Agricultural Sciences, Nangrang, Harbin, Heilongjiang, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Gangqing Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lishan Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| | - Yajuan Duan
- College of Advanced Agriculture and Ecological Environment, Heilongjiang Academy of Agricultural Sciences, Nangang, Harbin, Heilongjiang, China
| |
Collapse
|