1
|
Gao X, Liu S, Lv Y, Dai Q, Zhu L, Hu Z, Lu J, Zhou H, Jin J. Screening of Reference Genes for Quantitative Real-Time PCR Analysis in Tissues and during Testis Development, and Application to Analyze the Expression of kifc1 in Hemibarbus labeo (Teleostei, Cypriniformes, Cyprinidae). Animals (Basel) 2024; 14:2006. [PMID: 38998118 PMCID: PMC11240434 DOI: 10.3390/ani14132006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
The selection of proper reference genes is vital for ensuring precise quantitative real-time PCR (qPCR) assays. This study evaluates the stability of the expression of nine candidate reference genes in different tissues and during testicular development in H. labeo. The results show that eef1a is recommended as a reference gene for qPCR analysis in tissues and during testicular development. Furthermore, we evaluated the optimal number of reference genes needed when calculating gene expression levels using the geomean method, revealing that two reference genes are sufficient. Specifically, eef1a and rps27 are recommended for analysis of gene expression in tissues, whereas eef1a and actb are advised for evaluating gene expression during testicular development. In addition, we examined the expression pattern of kifc1, a kinesin involved in the reshaping of spermatids. We detected peak expression levels of kifc1 in testes, with its expression initially increasing before decreasing throughout testicular development. The highest expression of kifc1 was observed in stage IV testes, the active period of spermiogenesis, suggesting a possible role for kifc1 in the regulation of the reshaping of spermatids and hence testicular development. This study represents the first investigation of reference genes for H. labeo, providing a foundation for studying gene expression patterns and investigating gene expression regulation during testicular development.
Collapse
Affiliation(s)
- Xinming Gao
- College of Ecology, Lishui University, Lishui 323000, China
| | - Siqi Liu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Yaoping Lv
- College of Ecology, Lishui University, Lishui 323000, China
| | - Qingmin Dai
- College of Ecology, Lishui University, Lishui 323000, China
| | - Ling Zhu
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zehui Hu
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China
| | - Junkai Lu
- Cixi Fisheries Technology Extension Center, Ningbo 315300, China
| | - Haidong Zhou
- Suichang Fisheries and Agricultural Machinery Technology Extension Station, Lishui 323399, China
| | - Jing Jin
- Zhejiang Fisheries Technology Extension Center, Hangzhou 311100, China
| |
Collapse
|
2
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
3
|
Wang X, Pei J, Xiong L, Guo S, Cao M, Kang Y, Ding Z, La Y, Liang C, Yan P, Guo X. Single-Cell RNA Sequencing Reveals Atlas of Yak Testis Cells. Int J Mol Sci 2023; 24:ijms24097982. [PMID: 37175687 PMCID: PMC10178277 DOI: 10.3390/ijms24097982] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spermatogenesis is a complex process that involves proliferation and differentiation of diploid male germ cells into haploid flagellated sperm and requires intricate interactions between testicular somatic cells and germ cells. The cellular heterogeneity of this process presents a challenge in analyzing the different cell types at various developmental stages. Single-cell RNA sequencing (scRNA-seq) provides a useful tool for exploring cellular heterogeneity. In this study, we performed a comprehensive and unbiased single-cell transcriptomic study of spermatogenesis in sexually mature 4-year-old yak using 10× Genomics scRNA-seq. Our scRNA-seq analysis identified six somatic cell types and various germ cells, including spermatogonial stem cells, spermatogonia, early-spermatocytes, late-spermatocytes, and spermatids in yak testis. Pseudo-timing analysis showed that Leydig and myoid cells originated from common progenitor cells in yaks. Moreover, functional enrichment analysis demonstrated that the top expressed genes in yak testicular somatic cells were significantly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and ECM receptor interactions. Throughout the spermatogenesis process, genes related to spermatogenesis, cell differentiation, DNA binding, and ATP binding were expressed. Using immunohistochemical techniques, we identified candidate marker genes for spermatogonial stem cells and Sertoli cells. Our research provides new insights into yak spermatogenesis and the development of various types of cells in the testis, and presents more reliable marker proteins for in vitro culture and identification of yak spermatogonial stem cells in the later stage.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
4
|
Wang X, Pei J, Xiong L, Guo S, Cao M, Kang Y, Bao P, Wu X, Chu M, Liang C, Yan P, Guo X. Identification of the TSSK4 Alternative Spliceosomes and Analysis of the Function of the TSSK4 Protein in Yak (Bos grunniens). Animals (Basel) 2022; 12:ani12111380. [PMID: 35681843 PMCID: PMC9179852 DOI: 10.3390/ani12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
In mammals, the testis-specific serine/threonine kinase (TSSK) is essential for spermatogenesis and male fertility. TSSK4 belongs to the family of the testis-specific serine/threonine-protein kinase (TSSK), with a crucial role in spermatogenesis. This study aimed to analyze the variable spliceosome of the TSSK4 gene in the yak for understanding the regulatory function of the TSSK4 spliceosome in yak testis development using PCR amplification and cloning techniques. The GST pull-down was used for pulling down the protein interacting with TSSK4, and then the protein interacting with TSSK4 was identified using LC–MS/MS. The results of the PCR amplification demonstrated multiple bands of the TSSK4 gene in the yak. The cloning and sequencing yielded a total of six alternative spliceosomes, which included only two alternative spliceosomes before sexual maturity and four alternative spliceosomes after sexual maturity. The sub-cells of the alternative spliceosomes were found to localize in the nucleus before sexual maturity and in the cytoplasm after sexual maturity. The LC–MS/MS analysis of the alternative spliceosome with the highest expression after sexual maturity yielded a total of 223 interacting proteins. The enrichment analysis of the 223 interacting proteins revealed these proteins participate in biological processes, cell composition, and molecular functions. The KEGG analysis indicated that the TSSK4-interacting protein participates in the estrogen signaling pathways, tight junctions, endoplasmic reticulum protein processing, and other signaling pathways. This study cloned the six alternative spliceosomes of the TSSK4 gene laying the foundation for studying the function of each spliceosome in the future.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (J.P.); (L.X.); (S.G.); (M.C.); (Y.K.); (P.B.); (X.W.); (M.C.); (C.L.); (P.Y.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: ; Tel.: +86-1899-3037-854
| |
Collapse
|
5
|
Wang X, Pei J, Guo S, Cao M, Bao P, Xiong L, Wu X, Chu M, Liang C, Yan P, Guo X. Characterization of N 6-Methyladenosine in Domesticated Yak Testes Before and After Sexual Maturity. Front Cell Dev Biol 2021; 9:755670. [PMID: 34858983 PMCID: PMC8632223 DOI: 10.3389/fcell.2021.755670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
The potential regulatory role of N6-methyladenosine (m6A), the most prominent mRNA modification in eukaryotes, has recently been identified in mammals, plants, and yeast. However, whether and how m6A methylation is involved in sexual maturation in mammals remains largely unexplored. In this study, testicular tissue was obtained from yaks before and after sexual maturation, and m6A maps were generated via preliminary experiments and methylated RNA immunoprecipitation sequencing. Only spermatogonial cells and a few primary spermatocytes were observed in the testicular tissue of yaks before sexual maturation, while spermatogenic cells at different stages of maturity could observed after sexual maturation. Experiments examining the expression of methylation-related enzymes and overall methylation levels showed that the methylation levels in yak testes increased after sexual maturation. Overall, 1,438 methylation peaks were differentially expressed before and after sexual maturation; 1,226 showed significant up-regulation and 212 showed significant down-regulation after sexual maturation. Annotation analysis showed that the differential methylation peaks were most commonly concentrated in the exon region, followed by the 3′UTR and finally the 5′UTR region. KEGG pathway analysis demonstrated that homologous recombination, the Notch signaling pathway, growth hormone synthesis, and other signaling pathways may be involved in testicular development and maturation in yaks. Levels of most m6A modifications were positively correlated with mRNA abundance, suggesting that m6A plays a regulatory role in mammalian sexual maturation. To our knowledge, this is the first report of an m6A transcriptional map of the yak testes, and our study lays the foundation for elucidating the function of m6A in the development of yak testes.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Selection and Evaluation of Potential Reference Genes for Quantitative Real-Time PCR in Agaricus blazei Based on Transcriptome Sequencing Data. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6661842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely used to detect gene expression due to its high sensitivity, high throughput, and convenience. The accurate choice of reference genes is required for normalization of gene expression in qRT-PCR analysis. In order to identify the optimal candidates for gene expression analysis using qRT-PCR in Agaricus blazei, we studied the potential reference genes in this economically important edible fungus. In this study, transcriptome datasets were used as source for identification of candidate reference genes. And 27 potential reference genes including 21 newly stable genes, three classical housekeeping genes, and homologous genes of three ideal reference genes in Volvariella volvacea, were screened based on transcriptome datasets of A. blazei and previous studies. The expression stability of these genes was investigated by qRT-PCR analysis and further evaluated by four software packages, geNorm, NormFinder, BestKeeper, and RefFinder. Among these candidates, α-TUB (Tubulin alpha) and Cox5a (COX5A subunit VA of cytochrome c oxidase) were revealed as the most stable in fruit body, and suitable for 5 different developmental stages. α-TUB and ATP3 (ATP3 gamma subunit of the F1 sector of mitochondrial F1F0 ATP synthase) showed the most stable expression in stipe tissues and, Uqcrc (core subunit of the ubiquinol-cytochrome c reductase complex) and PUP3 (20S proteasome subunit beta 3) performed well in pileus tissues during the process of A. blazei development, while GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was among the least stable genes in all sample sets. Finally, the Ableln3 (homology of eln3 gene of Coprinus cinereus) was adopted to validate the reliability of these stable and unstable reference genes, indicating that the use of unsuitable reference genes as internal controls could change the target gene’s expression pattern. This study can provide guidance for choosing reference genes for analyzing the expression pattern of target genes and facilitate the functional genomic investigation on fruit body formation and development, as well as stipe elongation and pileus expansion in A. blazei.
Collapse
|
7
|
Zhang J, Deng C, Li J, Zhao Y. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus). BMC Genomics 2020; 21:493. [PMID: 32682387 PMCID: PMC7368715 DOI: 10.1186/s12864-020-06912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In quantitative real-time polymerase chain reaction (qRT-PCR) experiments, accurate and reliable target gene expression results are dependent on optimal amplification of house-keeping genes (HKGs). RNA-seq technology offers a novel approach to detect new HKGs with improved stability. Goat (Capra hircus) is an economically important livestock species and plays an indispensable role in the world animal fiber and meat industry. Unfortunately, uniform and reliable HKGs for skin research have not been identified in goat. Therefore, this study seeks to identify a set of stable HKGs for the skin tissue of C. hircus using high-throughput sequencing technology. RESULTS Based on the transcriptome dataset of 39 goat skin tissue samples, 8 genes (SRP68, NCBP3, RRAGA, EIF4H, CTBP2, PTPRA, CNBP, and EEF2) with relatively stable expression levels were identified and selected as new candidate HKGs. Commonly used HKGs including SDHA and YWHAZ from a previous study, and 2 conventional genes (ACTB and GAPDH) were also examined. Four different experimental variables: (1) different development stages, (2) hair follicle cycle stages, (3) breeds, and (4) sampling sites were used for determination and validation. Four algorithms (geNorm, NormFinder, BestKeeper, and ΔCt method) and a comprehensive algorithm (ComprFinder, developed in-house) were used to assess the stability of each HKG. It was shown that NCBP3 + SDHA + PTPRA were more stably expressed than previously used genes in all conditions analysis, and that this combination was effective at normalizing target gene expression. Moreover, a new algorithm for comprehensive analysis, ComprFinder, was developed and released. CONCLUSION This study presents the first list of candidate HKGs for C. hircus skin tissues based on an RNA-seq dataset. We propose that the NCBP3 + SDHA + PTPRA combination could be regarded as a triplet set of HKGs in skin molecular biology experiments in C. hircus and other closely related species. In addition, we also encourage researchers who perform candidate HKG evaluations and who require comprehensive analysis to adopt our new algorithm, ComprFinder.
Collapse
Affiliation(s)
- Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Chengchen Deng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Jialu Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, 400715, P. R. China.
| |
Collapse
|