1
|
Xu B, Qiu W, Gao X, Ni H, Tao X, Sun L, Lyu W. Advances in microbial degradation of skatole: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100378. [PMID: 40165934 PMCID: PMC11957808 DOI: 10.1016/j.crmicr.2025.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
In recent years, foul odors have led to widespread public complaints and have become a prominent issue in the field of environmental protection. Skatole, as one of the important components of foul odors, is a decomposition product of tryptophan in the intestines of animals and is mainly found in animal feces. Skatole not only has significant pulmonary toxicity to animals but also poses potential carcinogenic risks to humans. The biological method of removing skatole has the notable advantages of being cost-effective, efficient, and environmentally friendly. However, current research on the microbial degradation of skatole is still insufficient, the metabolic pathways for microbial degradation of skatole are not yet fully elucidated, and there is a lack of research on the functional genes involved in degradation. This review outlines skatole's production and distribution in solid, liquid, and gas media, identifies microorganisms capable of skatole degradation, and examines the microbial degradation mechanisms and influencing factors. Additionally, we summarize the hydroxyindole oxidative ring-opening pathway for skatole degradation in anaerobic conditions and multiple aerobic pathways, including oxidative ring-opening and ring-cleaving. Catechol 1,2-dioxygenase is proposed as a key enzyme in the downstream metabolism of microbial skatole degradation, offering guidance for future research.
Collapse
Affiliation(s)
- Bingjie Xu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
| | - Xinhua Gao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- Environmental Protection Monitoring Station of Shanghai, Shanghai, 201403, PR China
| | - Haiyan Ni
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, PR China
| | - Xuanyu Tao
- Institute for Environmental Genomics, School of Biology Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Lina Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
- Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture, Shanghai, 201403, PR China
| | - Weiguang Lyu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
- Shanghai Engineering Research Center of Low-carbon Agriculture (SERCLA), Shanghai, 201403, PR China
- Institute for Environmental Genomics, School of Biology Sciences, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
2
|
Zeng Z, Lv B, Tang YE, Sun H, Li S, He Y, Wang J, Wang Z. Effects of dietary selenized glucose on intestinal microbiota and tryptophan metabolism in rats: Assessing skatole reduction potential. ENVIRONMENTAL RESEARCH 2024; 252:118874. [PMID: 38579995 DOI: 10.1016/j.envres.2024.118874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.
Collapse
Affiliation(s)
- Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Shunfeng Li
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yuan He
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| |
Collapse
|
3
|
Recent genetic advances on boar taint reduction as an alternative to castration: a review. J Appl Genet 2021; 62:137-150. [PMID: 33405214 PMCID: PMC7822767 DOI: 10.1007/s13353-020-00598-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Boar taint is an unpleasant odor in male pig meat, mainly caused by androstenone, skatole, and indole, which are deposited in the fat tissue. Piglet castration is the most common practice to prevent boar taint. However, castration is likely to be banished in a few years due to animal welfare concerns. Alternatives to castration, such as genetic selection, have been assessed. Androstenone and skatole have moderate to high heritability, which makes it feasible to select against these compounds. This review presents the latest results obtained on genetic selection against boar taint, on correlation with other traits, on differences in breeds, and on candidate genes related to boar taint. QTLs for androstenone and skatole have been reported mainly on chromosomes 6, 7, and 14. These chromosomes were reported to contain genes responsible for synthesis and degradation of androstenone and skatole. A myriad of work has been done to find markers or genes that can be used to select animals with lower boar taint. The selection against boar taint could decrease performance of some reproduction traits. However, a favorable response on production traits has been observed by selecting against boar taint. Selection results have shown that it is possible to reduce boar taint in few generations. In addition, modifications in diet and environment conditions could be associated with genetic selection to reduce boar taint. Nevertheless, costs to measure and select against boar taint should be rewarded with incentives from the market; otherwise, it would be difficult to implement genetic selection.
Collapse
|