1
|
Galharret JM, Mahieu B, Ratel J, Krystalli E, Pissaridi K, Vigneau E, Engel E. Implementation of sample pooling to strengthen the self-monitoring in the food industry: Case study of mycotoxins in cereals. Food Res Int 2025; 205:115937. [PMID: 40032458 DOI: 10.1016/j.foodres.2025.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025]
Abstract
Implementation of sample pooling strategy in the food chemical surveillance could lead to a strengthening of the food safety by increasing the number of analyzable samples. The analysis of a pool of samples and no longer individual samples was applied to the issue of self-monitoring mycotoxins in cereal-based foods, thanks to a data set provided by the surveillance based on ELISA-kits of two mycotoxins - zearalenone (1121 samples) and ochratoxin A (1601 samples) - in four different types of cereal products. After fitting the distribution of mycotoxin concentrations determined in this product category by a Pareto distribution and considering the measurement error in the decision threshold, numerical simulations of pooling were implemented using the Dorfman-2-step strategy. Simulations showed promising results for three out of the four case-studies of zearalenone and ochratoxin A. While being as sensitive and specific as the current one-by-one system, the pooling approach led to a reduction of the number of analyzes performed by 75 - 87 % in three out of the four case studies. Nevertheless, in unfavorable analytical conditions, the pooling approach can lead to an increase of the total number of analyzes.
Collapse
Affiliation(s)
| | | | - Jérémy Ratel
- INRAE, UR QuaPA, MASS Group F-63122 Saint-Genès-Champanelle, France
| | | | | | | | - Erwan Engel
- INRAE, UR QuaPA, MASS Group F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
2
|
Sun P, Liu M, Zhou S, Yang L, Xie S, Riaz H, Huo L, Liang A. Maternal exposure to DON during lactation induces testicular toxicity in pubertal and adult offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116468. [PMID: 38776783 DOI: 10.1016/j.ecoenv.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Deoxynivalenol (DON), a type B trichothecene mycotoxin, commonly occurs in cereal grains, and poses significant health risks to humans and animals. Numerous studies reveal its obvious toxic effects on male reproductive performance as well as its ability to transfer from the lactating mother to the suckling offspring through colostrum and milk. The objective of this study was to evaluate the toxic effect of lactational DON exposure on testicular morphology, hormonal levels, inflammation, apoptosis and proliferation of germ cells, tight junction, and sperm quality in male offspring. Sixty-six male offspring mice from lactating dams exposed to DON were euthanized at PND 21 and PND 70 to investigate the reproductive toxicity. Our results indicated that maternal DON exposure had a significant impact on the weight and volume of the testes, caused testicular histopathology, and reduced testosterone levels by downregulating expressions of StAR, CYP11A1, and CYP17A1 in male offspring. We also found that maternal DON exposure led to testicular inflammation in male offspring, which was attributed to increased levels of inflammatory markers, including IL-1β, IL-6, TNF-α, and IFN-γ. Maternal DON exposure resulted in impaired tight junctions of Sertoli cells in male offspring, as evidenced by decreased expressions of ZO-1, Occludin, and Claudin-3. In addition, maternal DON exposure caused a reduction in the number of Sertoli cells and germ cells, ultimately leading to decreased sperm count and quality in adult male offspring. Collectively, these findings provide compelling evidence that maternal exposure to DON during lactation causes testicular toxicity in both pubertal and adult male offspring.
Collapse
Affiliation(s)
- Peihao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shiyong Xie
- Beijing General Station of Animal Husbandry, Beijing 100124, China
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Punjab 57000, Pakistan
| | - Lijun Huo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Aixin Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
3
|
Benthem de Grave X, Saltzmann J, Laurain J, Rodriguez MA, Molist F, Dänicke S, Santos RR. The Ability of an Algoclay-Based Mycotoxin Decontaminant to Decrease the Serum Levels of Zearalenone and Its Metabolites in Lactating Sows. Front Vet Sci 2021; 8:704796. [PMID: 34660754 PMCID: PMC8515040 DOI: 10.3389/fvets.2021.704796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the effect of an algoclay-based mycotoxin decontaminant on the levels of ZEN, DON, and their derivatives in the colostrum, milk, and serum of sows, as well as in the serum of weaned piglets after maternal mycotoxin exposure during the last week of gestation and during lactation of sows (26 days). For this, sows (n = 5) were fed diets artificially contaminated with 100 (LoZEN) or 300 (HiZEN) ppb ZEN, with or without an algoclay-based mycotoxin decontaminant in the highly contaminated diet. All diets contained 250 ppb deoxynivalenol (DON). Dietary treatments did not affect the performance of the sows and piglets. Only α-ZEL was significantly increased in the colostrum of sows fed the HiZEN diet, and this increase was even higher in the colostrum of the sows fed the HiZEN diet supplemented with the test decontaminant. However, no differences in milk mycotoxin levels were observed at weaning. The highest levels of ZEN, α-ZEL, and β-ZEL were observed in the serum of sows fed the HiZEN diet. When the HiZEN diet was supplemented with the tested algoclay-based mycotoxin decontaminant the levels of ZEN and its metabolites were significantly decreased in the serum of sows. Although all sows were fed the same levels of DON, the serum level of de-epoxy-DON was increased only in the serum of piglets from the sows fed a diet with the non-supplemented HiZEN diet. In conclusion, the tested algoclay-based mycotoxin decontaminant can decrease the levels of ZEN and its metabolites in the serum of sows and the level of de-DON in the serum of piglets.
Collapse
Affiliation(s)
| | - Janine Saltzmann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | | | | | | | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Brunswick, Germany
| | | |
Collapse
|
4
|
Transmission of Zearalenone, Deoxynivalenol, and Their Derivatives from Sows to Piglets during Lactation. Toxins (Basel) 2021; 13:toxins13010037. [PMID: 33419041 PMCID: PMC7825292 DOI: 10.3390/toxins13010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Sows were fed naturally contaminated diets containing: (i) 100 ppb zearalenone (ZEN) one week before farrowing and during the lactation period (at 26 days), (ii) 100 ppb ZEN one week before farrowing and 300 ppb ZEN during the lactation period, or (iii) 300 ppb ZEN one week before farrowing and during the lactation period. All diets contained 250 ppb deoxynivalenol (DON). The highest levels of ZEN, α-ZEL, or β-ZEL were observed in the serum of sows fed 300 ppb ZEN before farrowing and during lactation. However, only α-ZEL was significantly increased in the colostrum and milk of these sows. Sows fed the 300 ppb ZEN during the complete trial presented a significant decrease in backfat thickness before farrowing. This effect was accompanied by a decrease in serum leptin levels. These sows also presented a decrease in estradiol levels and this effect was observed in their piglets exposed during lactation, which presented increased glucagon-like peptide 1, but no changes in serum levels of ZEN, α-ZEL, or β-ZEL. Although all sows were fed the same levels of DON, the serum levels of DON and de-epoxy-DON were increased only in the serum of piglets from the sows fed a diet with the highest ZEN levels during the whole experimental period. Moreover, these piglets presented gut inflammation, as indicated by significantly increased calprotectin levels in their serum.
Collapse
|