1
|
Li M, Deng A, He C, Yao Z, Zhuo Z, Wang XY, Wang Z. Genome sequencing, comparative analysis, and gene expression responses of cytochrome P450 genes in Oryzias curvinotus provide insights into environmental adaptation. Ecol Evol 2024; 14:e11565. [PMID: 38895576 PMCID: PMC11184212 DOI: 10.1002/ece3.11565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The mangrove fish (Oryzias curvinotus) serves as a model for researching environmental adaptation and sexual development. To further such research, we sequenced and assembled a high-quality 842 Mb reference genome for O. curvinotus. Comparative genomic analysis revealed 891 expanded gene families, including significantly expanded cytochrome P450 (CYP) detoxification genes known to be involved in xenobiotic defense. We identified 69 O. curvinotus CYPs (OcuCYPs) across 18 families and 10 clans using multiple methods. Extensive RNA-seq and qPCR analysis demonstrated diverse spatiotemporal expression patterns of OcuCYPs by developmental stage, tissue type, sex, and pollutant exposure (17β-estradiol (E2) and testosterone (MT)). Many OcuCYPs exhibited sexual dimorphism in gonads, suggesting reproductive roles in steroidogenesis, while their responsiveness to model toxicants indicates their importance in environmental adaptation through enhanced detoxification. Pathway analysis highlighted expanded CYP genes in arachidonic acid metabolism, drug metabolism, and steroid hormone biosynthesis. This chromosome-level genomic resource provides crucial biological insights to elucidate the functional roles of expanded CYPs in environmental adaptation, sexual development, early life history, and conservation in the anthropogenically impacted mangrove habitats of O. curvinotus. It also enables future ecotoxicology research leveraging O. curvinotus as a pollution sentinel species.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Aiping Deng
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Chuanmeng He
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zebin Yao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zixuan Zhuo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Xiu yue Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education InstitutesFisheries College, Guangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy CultureFisheries College, Guangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
2
|
Yao Z, Long S, Wang C, Huang C, Zhang H, Jian L, Huang J, Guo Y, Dong Z, Wang Z. Population genetic characteristics of Hainan medaka with whole-genome resequencing. Front Genet 2022; 13:946006. [PMID: 36313474 PMCID: PMC9597887 DOI: 10.3389/fgene.2022.946006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
The DMY gene is deleted in all males of the Sanya population (SY-medaka) of the Hainan medaka, Oryzias curvinotus, as recently reported by us. However, due to limited knowledge regarding their population genetic background, it is difficult to explore the possible evolutionary pathway. Herein, we resequenced the whole genome of four populations, including SY-medaka. A total of 56 mitogenomes and 32,826,105 SNPs were identified. We found that the genetic differentiation is highest between SY-medaka and the other populations. The results of the population history of the O. curvinotus suggest that the SY-medaka has been in a bottleneck period recently. Further analysis shows that SY-medaka are the most strongly affected by environmental selection. Moreover, we screened some potential genomic regions, and the genes contained in these regions may explain the potential mechanism of the selection process of the SY-medaka. In conclusion, our study can provide new clues for the adaptation process of medaka in the new environment of Sanya.
Collapse
Affiliation(s)
- Zebin Yao
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Shuisheng Long
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chun Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chengqin Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Hairui Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liao Jian
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Jingru Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Zhongduo Wang,
| |
Collapse
|
4
|
Wen M, Pan Q, Larson W, Eché C, Guiguen Y. Characterization of the sex determining region of channel catfish (Ictalurus punctatus) and development of a sex-genotyping test. Gene X 2022; 850:146933. [DOI: 10.1016/j.gene.2022.146933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
5
|
Zhi F, Jiang DN, Mustapha UF, Li SX, Shi HJ, Li GL, Zhu CH. Expression and regulation of 42Sp50 in spotted scat (Scatophagus argus). Front Genet 2022; 13:964150. [PMID: 36035129 PMCID: PMC9403048 DOI: 10.3389/fgene.2022.964150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
42Sp50 is an isoform of the eukaryotic translation elongation factor 1 A (eEF1A) and is vital for fish ovarian development. Spotted scat (Scatophagus argus) is a popular marine cultured fish species in Southern Asia and China, and its artificial reproduction is complicated, with a relatively low success ratio in practice. In this study, the 42Sp50 gene was cloned from spotted scat. Tissue distribution analysis showed that 42Sp50 was mainly expressed in the ovary. qRT-PCR showed that 42Sp50 expression levels gradually decreased insignificantly in the ovaries from phase II to IV. Western blot analysis showed that 42Sp50 was highly expressed in the ovary, while it was almost undetectable in the testis. Immunohistochemistry analysis stained 42Sp50 mainly in the cytoplasm of the previtellogenic oocytes in ovaries of normal XX-female and sex-reversed XY-female. Aside from fish and amphibians, 42Sp50 was also identified in some reptile species using genomic database searching. Analyses of the transcriptome data from four different fish species (Hainan medaka (Oryzias curvinotus), silver sillago (Sillago sihama), Nile tilapia (Oreochromis niloticus), and Hong Kong catfish (Clarias fuscus)) revealed ovaries biased expression of 42Sp50 in all, similar to spotted scat. While the neighbor genes of 42Sp50 did not show ovary biased expression in the fish species analyzed. Bisulfite Sequencing PCR (BSP) results showed that the DNA methylation level of 42Sp50 promoter was low in ovaries, testes, and muscles. The luciferase reporter assay demonstrated that Dmrt4 activated 42Sp50 expression in the presence of Sf1 or Foxh1. These results suggest that 42Sp50 may be involved in regulating the early phase oocytes development of spotted scat.
Collapse
|
6
|
Mustapha UF, Assan D, Huang YQ, Li GL, Jiang DN. High Polymorphism in the Dmrt2a Gene Is Incompletely Sex-Linked in Spotted Scat, Scatophagus argus. Animals (Basel) 2022; 12:ani12050613. [PMID: 35268179 PMCID: PMC8909180 DOI: 10.3390/ani12050613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Unlike mammals and birds, many fishes have young sex chromosomes, providing excellent models to study sex chromosome differentiation at early stages. Previous studies showed that spotted scat possesses an XX-XY sex determination system. The X has a complete Dmrt3 copy (termed normal) and a truncated copy of Dmrt1 (called Dmrt1b), while the Y has the opposite (normal Dmrt1, which is male-specific, and a truncated Dmrt3 called Dmrt3△-Y). Dmrt1 is the candidate sex determination gene, while the differentiation of other sex-linked genes remains unknown. The spotted scat has proven to be a good model to study the evolution of sex chromosomes in vertebrates. Herein, we sequenced a neighbor gene of this family, Dmrt2, positioned farther from Dmrt1 and closer to Dmrt3 in the spotted scat, and analyzed its sequence variation and expression profiles. The physical locations of the three genes span across an estimated size of >40 kb. The open reading frames of Dmrt2a and its paralog Dmrt2b are 1578 bp and 1311 bp, encoding peptides of 525 and 436 amino acid residues, respectively. Dmrt2a is positioned close to Dmrt3 but farther from Dmrt1 on the same chromosome, while Dmrt2b is not. Sequence analysis revealed several mutations; insertions, and deletions (indels) on Dmrt2a non-coding regions and single-nucleotide polymorphisms (SNPs) on the Dmrt2a transcript. These indels and SNPs are sex-linked and showed high male heterogeneity but do not affect gene translation. The markers designed to span the mutation sites tested on four different populations showed varied concordance with the genetic sexes. Dmrt2a is transcribed solely in the gonads and gills, while Dmrt2b exists in the gonads, hypothalamus, gills, heart, and spleen. The Dmrt2a and Dmrt2b transcripts are profoundly expressed in the male gonads. Analyses of the transcriptome data from five other fish species (Hainan medaka (Oryzias curvinotus), silver sillago (Sillago sihama), Nile tilapia (Oreochromis niloticus), Hong Kong catfish (Clarias fuscus), and spot-fin porcupine fish (Diodon hystrix)) revealed testes-biased expression of Dmrt1 in all, similar to spotted scat. Additionally, the expression of Dmrt2a is higher in the testes than the ovaries in spotted scat and Hainan medaka. The Dmrt2a transcript was not altered in the coding regions as found in Dmrt1 and Dmrt3 in spotted scat. This could be due to the functional importance of Dmrt2a in development. Another possibility is that because Dmrt2a is positioned farther from Dmrt1 and the chromosome is still young, meaning it is only a matter of time before it differentiates. This study undeniably will aid in understanding the functional divergence of the sex-linked genes in fish.
Collapse
|