1
|
Rauber JDS, Chaves JNF, Wrzesinski MR, Sekita AMT, Soares TDS, Beckmann DV, Mazzanti A. Physiotherapy in the Recovery of Paraplegic Dogs without Nociception Due to Thoracolumbar Intervertebral Disc Extrusion Treated Surgically. Animals (Basel) 2024; 14:2648. [PMID: 39335238 PMCID: PMC11428865 DOI: 10.3390/ani14182648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Several authors have advocated for the role of physiotherapy in canine intervertebral disc extrusion, and it is routinely recommended by various veterinary neurologists. However, veterinary literature does not unanimously support the routine use of physiotherapy to ensure an increase in locomotor return in dogs with IVDE. The aim of the study was to investigate whether physiotherapy can influence the functional recovery of paraplegic dogs with loss of nociception (LN) affected by thoracolumbar IVDE (Hansen type I) and treated surgically. The animals were divided into two groups: the physiotherapy group (PG), which included those that underwent decompressive surgery and postoperative physiotherapy; and the control group (CG), which included dogs that did not undergo any physiotherapy after surgery. A total of 51 dogs were included, with 30 in the PG and 21 in the CG. The number of physiotherapy sessions ranged from 6 to 60. The rate of functional recovery in dogs within 21 days postoperatively (PO) was 10% (3/30) in the PG and 19% (4/21) in the CG. After 21 days PO, the recovery rate was 43.33% (13/30) in the PG and 61.9% (13/21) in the CG, with no significant difference observed between the groups (p = 0.258). Based on the findings of this study, it was concluded that physiotherapy in paraplegic dogs with LN due to thoracolumbar IVDE does not appear to influence functional recovery compared to the group without physiotherapy.
Collapse
Affiliation(s)
- Júlia da Silva Rauber
- Graduate Program in Veterinary Medicine, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil; (J.d.S.R.); (J.N.F.C.); (M.R.W.); (A.M.T.S.); (T.d.S.S.)
| | - Julya Nathalya Felix Chaves
- Graduate Program in Veterinary Medicine, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil; (J.d.S.R.); (J.N.F.C.); (M.R.W.); (A.M.T.S.); (T.d.S.S.)
| | - Mathias Reginatto Wrzesinski
- Graduate Program in Veterinary Medicine, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil; (J.d.S.R.); (J.N.F.C.); (M.R.W.); (A.M.T.S.); (T.d.S.S.)
| | - Amanda Miwa Takamori Sekita
- Graduate Program in Veterinary Medicine, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil; (J.d.S.R.); (J.N.F.C.); (M.R.W.); (A.M.T.S.); (T.d.S.S.)
| | - Thais da Silva Soares
- Graduate Program in Veterinary Medicine, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil; (J.d.S.R.); (J.N.F.C.); (M.R.W.); (A.M.T.S.); (T.d.S.S.)
| | - Diego Vilibaldo Beckmann
- Department of Small Animal Clinic, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil;
| | - Alexandre Mazzanti
- Department of Small Animal Clinic, Veterinary Neurology and Neurosurgery Service, Federal University of Santa Maria, Center for Rural Sciences, University Veterinary Hospital, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
2
|
Gouveia D, Cardoso A, Carvalho C, Rijo I, Almeida A, Gamboa Ó, Lopes B, Sousa P, Coelho A, Balça MM, Salgado AJ, Alvites R, Varejão ASP, Maurício AC, Ferreira A, Martins Â. The Role of Early Rehabilitation and Functional Electrical Stimulation in Rehabilitation for Cats with Partial Traumatic Brachial Plexus Injury: A Pilot Study on Domestic Cats in Portugal. Animals (Basel) 2024; 14:323. [PMID: 38275783 PMCID: PMC10812540 DOI: 10.3390/ani14020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors. Furthermore, FES was parametrized according to the presence or absence of deep pain. Following treatment, 72.6% of the cats achieved ambulation: 9 cats within 15 days, 2 cats within 30 days and 5 cats within 60 days. During the four-year follow-up, there was evidence of improvement in both muscle mass and muscle weakness, in addition to the disappearance of neuropathic pain. Notably, after the 60 days of neurorehabilitation, 3 cats showed improved ambulation after arthrodesis of the carpus. Thus, early rehabilitation, with FES applied in the first weeks after injury and accurate parametrization according to the presence or absence of deep pain, may help in functional recovery and ambulation, reducing the probability of amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - Inês Rijo
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Maria Manuel Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| |
Collapse
|
3
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
4
|
Gouveia D, Fonseca S, Carvalho C, Cardoso A, Almeida A, Gamboa Ó, Canejo-Teixeira R, Ferreira A, Martins Â. Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury. Animals (Basel) 2023; 13:ani13071164. [PMID: 37048421 PMCID: PMC10093106 DOI: 10.3390/ani13071164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
This prospective observational clinical study in a population of tetraplegic and paraplegic dogs (n = 488) with or without deep pain sensation, similar to humans ASIA A and B, investigated the prevalence of clinical occurrences in a rehabilitation center with a hospitalization regime between 15 days and 9 months. A checklist of occurrences was used for easy identification and monitoring, resulting in a total of 79.5% occurrences. There were 58% of dogs with neurogenic bladder, 35.5% with diarrhea, 21.3% with urinary incontinence, and 20.5% with fecal incontinence. A low incidence of respiratory problems (e.g., pneumonia) and urinary tract infections may suggest the efficacy of some applied measures in this study, such as thoracic and abdominal POCUS evaluation, positioning strategies, physical exercises, respiratory kinesiotherapy, and early implementation of a functional neurorehabilitation protocol. These can be essential measures to prevent clinical occurrences, mainly in breeds such as the French Bulldog and the Dachshund.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisboa, Portugal
| | - Sara Fonseca
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Rute Canejo-Teixeira
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital, Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
5
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Gouveia D, Carvalho C, Cardoso A, Gamboa Ó, Almeida A, Ferreira A, Martins Â. Early Locomotor Training in Tetraplegic Post-Surgical Dogs with Cervical Intervertebral Disc Disease. Animals (Basel) 2022; 12:ani12182369. [PMID: 36139228 PMCID: PMC9495086 DOI: 10.3390/ani12182369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Locomotor training (LT) is task-specific repetitive training, with sensorimotor stimulation and intensive exercises that promote neuromuscular reorganization. This study aimed to observe if LT could be initiated safely in the first 3−15 days after surgery in tetraplegic C1−C5 IVDD—Hansen type I dogs. This prospective blinded clinical study was conducted at two rehabilitation centers in Portugal, with 114 grade 1 (MFS/OFS) dogs, divided by the presence of spinal hyperesthesia into the SHG (spinal hyperesthesia group) (n = 74) and the NSHG (non-spinal hyperesthesia group) (n = 40), evaluated in each time point for two weeks according to a neurorehabilitation checklist by three observers for inter-agreement relation. LT was safely applied with 62.3% of the OFS ≥ 11 within 15 days and of these, 32.4% achieved a OFS ≥ 13. There were no new cases of hyperesthesia in the NSHG and from the SHG all recovered. Comparing groups, a significant difference was observed in their ability to achieve ambulatory status (p < 0.001), between the presence of hyperesthesia and days until ambulation (p < 0.006) and in each time point (p < 0.001; R2 = 0.809). Early LT may be a safe treatment to be applied in the first 3 days on these dogs and spinal hyperesthesia should be important to the rehabilitation team. This study should be continued.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Correspondence:
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
7
|
Gouveia D, Cardoso A, Carvalho C, Gonçalves AR, Gamboa Ó, Canejo-Teixeira R, Ferreira A, Martins Â. Influence of Spinal Shock on the Neurorehabilitation of ANNPE Dogs. Animals (Basel) 2022; 12:ani12121557. [PMID: 35739893 PMCID: PMC9219513 DOI: 10.3390/ani12121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Acute noncompressive nucleus pulposus extrusion (ANNPE) is related to contusive spinal cord injuries, and dogs usually appear to be exercising vigorously at the time of onset. ANNPE has a characteristic peracute onset of clinical signs during exercise or following trauma, with non-progressive signs during the first 24 h and possibly signs of spinal shock. The main aim was to assess if the presence of spinal shock affects the neurorehabilitation outcomes of ANNPE dogs. This prospective controlled cohort clinical study was conducted at the Arrábida Rehabilitation Center. All of the dogs had T3−L3 injuries and were paraplegic/monoplegic with/without nociception, the study group (n = 14) included dogs with ANNPE spinal shock dogs, and the control group (n = 19) included ANNPE dogs without spinal shock. The study group was also evaluated using a new scale—the Spinal Shock Scale (SSS)—and both groups were under the same intensive neurorehabilitation protocol. Spinal shock was a negative factor for a successful outcome within less time. SSS scores > 4 required additional hospitalization days. The protocol was safe, tolerable, and feasible and accomplished 32% ambulation within 7 days, 29% in 14 days, and 29% in 30 days. The results were better than those obtained in previous studies—94% at 60 days—and 75% of the dogs without nociception recovered ambulation. Long-term follows-ups carried out 4 years later revealed a positive evolution.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
| | - Carla Carvalho
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
| | - Ana Rita Gonçalves
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (Ó.G.); (A.F.)
| | - Rute Canejo-Teixeira
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (Ó.G.); (A.F.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-538 Setúbal, Portugal; (A.C.); (C.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.R.G.); (R.C.-T.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Abstract
Physical rehabilitation incorporates several elements, including but not limited to therapeutic exercises, manual therapy, and physical modalities. Understanding of the effects, indications, contraindications, and precautions is essential for proper use, while understanding of the diagnosis, assessment of the stage of tissue healing and repair, and accurate clinical assessment of the functional limitations are essential when establishing a physical rehabilitation plan.
Collapse
Affiliation(s)
- Lauri-Jo Gamble
- Sports Medicine and Rehabilitation Service, Ottawa Animal Emergency and Specialty Hospital, 1155 Lola Street, Suite 201, Ottawa K1K 4C1, Canada.
| |
Collapse
|