1
|
Cagnasso F, Suchodolski JS, Borrelli A, Borella F, Bottero E, Benvenuti E, Ferriani R, Tolbert MK, Chen CC, Giaretta PR, Gianella P. Dysbiosis index and fecal concentrations of sterols, long-chain fatty acids and unconjugated bile acids in dogs with inflammatory protein-losing enteropathy. Front Microbiol 2024; 15:1433175. [PMID: 39464397 PMCID: PMC11505111 DOI: 10.3389/fmicb.2024.1433175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Canine protein-losing enteropathy (PLE) is a syndrome characterized by gastrointestinal loss of proteins. While fecal microbiome and metabolome perturbations have been reported in dogs with chronic enteropathy, they have not been widely studied in dogs with PLE. Therefore, the study aims were to investigate gut microbiome and targeted fecal metabolites in dogs with inflammatory PLE (iPLE) and evaluate whether treatment affects these changes at short-term follow-up. Methods Thirty-eight dogs with PLE and histopathological evidence of gastrointestinal inflammation and 47 healthy dogs were enrolled. Fecal samples were collected before endoscopy (T0) and after one month of therapy (T1). Microbiome and metabolome alterations were investigated using qPCR assays (dysbiosis index, DI) and gas chromatography/mass spectrometry (long-chain fatty acids, sterols, unconjugated bile acids), respectively. Results Median (min-max) DI of iPLE dogs was 0.4 (-5.9 to 7.7) and was significantly higher (p < 0.0001) than median DI in healthy dogs [-2.0 (-6.0 to 5.3)]. No significant associations were found between DI and selected clinicopathological variables. DI did not significantly differ between T0 and T1. In iPLE dogs, at T0, myristic, palmitic, linoleic, oleic, cis-vaccenic, stearic, arachidonic, gondoic, docosanoic, erucic, and nervonic acids were significantly higher (p < 0.0001) than healthy dogs. In iPLE dogs, oleic acid (p = 0.044), stearic acid (p = 0.013), erucic acid (p = 0.018) and nervonic acid (p = 0.002) were significantly decreased at T1. At T0, cholesterol and lathosterol (p < 0.0001) were significantly higher in iPLE dogs compared to healthy dogs, while total measured phytosterols were significantly lower (p = 0.001). No significant differences in total sterols, total phytosterols and total zoosterols content were found at T1, compared to T0. At T0, total primary bile acids and total secondary bile acids did not significantly differ between healthy control dogs and iPLE dogs. No significant differences in fecal bile acid content were found at T1. Discussion Dysbiosis and lipid metabolism perturbations were observed in dogs with iPLE. Different therapeutic protocols lead to an improvement of some but not all metabolome perturbations at short-term follow-up.
Collapse
Affiliation(s)
- Federica Cagnasso
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Antonio Borrelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Franca Borella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | | | | | - M. Katherine Tolbert
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Chih-Chun Chen
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paula R. Giaretta
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Paola Gianella
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
2
|
Voudren CD, Mayhue EJ, Riehm MD, Jugan MC. Evaluation of the relationship between plasma glucagon-like peptide-2 and gastrointestinal dysbiosis in canine chronic enteropathies. PLoS One 2024; 19:e0305711. [PMID: 38935795 PMCID: PMC11210855 DOI: 10.1371/journal.pone.0305711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Chronic enteropathies are a common cause of morbidity in dogs and are associated with disruption of the normal gastrointestinal mucosal barrier. The objective of this prospective study was to determine the association between measures of gastrointestinal dysbiosis and plasma concentrations of glucagon-like peptide-2, a hormone responsible for normal mucosal structure, in dogs with chronic enteropathies. Fecal 16S V4 rRNA gene sequencing and quantitative PCR via the dysbiosis index was performed on 16 healthy controls and 18 dogs with chronic enteropathy prior to and 1 month after initiation of individualized therapy. Fasting and post-prandial plasma GLP-2 concentrations were measured via ELISA in healthy dogs and chronic enteropathy dogs at both time points. Alpha and beta diversity indices, as well as bacterial population abundances were compared between groups and time-points. Principal component analysis combined with least squares regression was used to identify taxa contributing to glucagon-like peptide-2 variance among groups. While the dysbiosis index did not differ between healthy dogs and dogs with chronic enteropathy, 16S V4 genomic sequencing identified 47 operational taxonomic units that differed between the groups, all but 2 of which resolved following chronic enteropathy treatment. Principal component analysis identified 6 families and 19 genera that contributed to differences in glucagon-like peptide-2 concentrations between groups. Dysbiosis associated with chronic enteropathies in dogs may contribute to the observed lower plasma glucagon-like peptide-2 concentrations. Further research into mechanisms of microbiota impact on the enteroendocrine system is needed. Association between glucagon-like peptide-2 secretion and microbiome indices may help to guide research into future treatment strategies for dogs with chronic enteropathy.
Collapse
Affiliation(s)
- Caylie D. Voudren
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Erin J. Mayhue
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Michelle D. Riehm
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Maria C. Jugan
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
3
|
Jergens AE, Heilmann RM. Canine chronic enteropathy—Current state-of-the-art and emerging concepts. Front Vet Sci 2022; 9:923013. [PMID: 36213409 PMCID: PMC9534534 DOI: 10.3389/fvets.2022.923013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, chronic inflammatory enteropathies (CIE) in dogs have received great attention in the basic and clinical research arena. The 2010 ACVIM Consensus Statement, including guidelines for the diagnostic criteria for canine and feline CIE, was an important milestone to a more standardized approach to patients suspected of a CIE diagnosis. Great strides have been made since understanding the pathogenesis and classification of CIE in dogs, and novel diagnostic and treatment options have evolved. New concepts in the microbiome-host-interaction, metabolic pathways, crosstalk within the mucosal immune system, and extension to the gut-brain axis have emerged. Novel diagnostics have been developed, the clinical utility of which remains to be critically evaluated in the next coming years. New directions are also expected to lead to a larger spectrum of treatment options tailored to the individual patient. This review offers insights into emerging concepts and future directions proposed for further CIE research in dogs for the next decade to come.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- *Correspondence: Albert E. Jergens
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| |
Collapse
|
4
|
Innocente G, Patuzzi I, Furlanello T, Di Camillo B, Bargelloni L, Giron MC, Facchin S, Savarino E, Azzolin M, Simionati B. Machine Learning and Canine Chronic Enteropathies: A New Approach to Investigate FMT Effects. Vet Sci 2022; 9:vetsci9090502. [PMID: 36136718 PMCID: PMC9505216 DOI: 10.3390/vetsci9090502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) represents a very promising approach to decreasing disease activity in canine chronic enteropathies (CE). However, the relationship between remission mechanisms and microbiome changes has not been elucidated yet. The main objective of this study was to report the clinical effects of oral freeze-dried FMT in CE dogs, comparing the fecal microbiomes of three groups: pre-FMT CE-affected dogs, post-FMT dogs, and healthy dogs. Diversity analysis, differential abundance analysis, and machine learning algorithms were applied to investigate the differences in microbiome composition between healthy and pre-FMT samples, while Canine Chronic Enteropathy Clinical Activity Index (CCECAI) changes and microbial diversity metrics were used to evaluate FMT effects. In the healthy/pre-FMT comparison, significant differences were noted in alpha and beta diversity and a list of differentially abundant taxa was identified, while machine learning algorithms predicted sample categories with 0.97 (random forest) and 0.87 (sPLS-DA) accuracy. Clinical signs of improvement were observed in 74% (20/27) of CE-affected dogs, together with a statistically significant decrease in CCECAI (median value from 5 to 2 median). Alpha and beta diversity variations between pre- and post-FMT were observed for each receiver, with a high heterogeneity in the response. This highlighted the necessity for further research on a larger dataset that could identify different healing patterns of microbiome changes.
Collapse
Affiliation(s)
- Giada Innocente
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | - Ilaria Patuzzi
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
| | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, 35020 Legnaro, Italy
| | - Maria Cecilia Giron
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sonia Facchin
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Edoardo Savarino
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy
| | - Mirko Azzolin
- Ospedale Veterinario San Francesco, 31038 Castagnole, Italy
| | - Barbara Simionati
- Research & Development Division, EuBiome S.r.l., 35131 Padova, Italy
- Department of Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
5
|
Galler AI, Suchodolski JS, Steiner JM, Sung CH, Hittmair KM, Richter B, Burgener IA. Microbial dysbiosis and fecal metabolomic perturbations in Yorkshire Terriers with chronic enteropathy. Sci Rep 2022; 12:12977. [PMID: 35902689 PMCID: PMC9334271 DOI: 10.1038/s41598-022-17244-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
Dysbiosis and perturbations of fecal metabolic profiles have been reported in dogs with inflammatory bowel disease. Currently the incidence of dysbiosis and the fecal metabolomic profile in Yorkshire Terriers with chronic enteropathy (YTE) and the effects of treatment are unknown. This prospective observational study analyzed the dysbiosis index (DI) and fecal bile acid, sterol and fatty acid profiles in 14 Yorkshire Terriers with active YTE, 11 dogs in clinical remission, and 26 healthy Yorkshire Terriers. YTE was associated with dysbiosis and a significant increase in fatty acids (docosanoate, p = 0.002; gondoate, p = 0.026; erucate, p < 0.001; nervonate, p < 0.001; linolenate, p < 0.001), and plant sterols (campesterol, p < 0.001; brassicasterol, p = 0.024). The abundances of Fusobacterium (p < 0.001) and Cl. hiranonis (p = 0.018) and the concentrations of the secondary bile acid ursodeoxycholic acid (p = 0.033) and the plant sterol sitostanol (p = 0.003) were significantly decreased compared to healthy dogs. Dysbiosis, abundances of Fusobacterium, Cl. hiranonis and fecal concentrations of bile acids and sterols did not recover after treatment, while fecal fatty acid concentrations decreased in treated dogs. YTE is associated with dysbiosis and changes in bile acid, fatty acid, and sterol metabolism. These changes only recovered partially despite clinical remission. They might be breed-specific and involved in the pathogenesis of YTE.
Collapse
Affiliation(s)
- Alexandra I Galler
- Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Katharina M Hittmair
- Clinical Unit of Diagnostic Imaging, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Richter
- Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Iwan A Burgener
- Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Sung CH, Marsilio S, Chow B, Zornow KA, Slovak JE, Pilla R, Lidbury JA, Steiner JM, Park SY, Hong MP, Hill SL, Suchodolski JS. Dysbiosis index to evaluate the fecal microbiota in healthy cats and cats with chronic enteropathies. J Feline Med Surg 2022; 24:e1-e12. [PMID: 35266809 PMCID: PMC9160961 DOI: 10.1177/1098612x221077876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous studies have identified various bacterial taxa that are altered in cats with chronic enteropathies (CE) vs healthy cats. Therefore, the aim of this study was to develop a targeted quantitative molecular method to evaluate the fecal microbiota of cats. METHODS Fecal samples from 80 client-owned healthy cats and 68 cats with CE were retrospectively evaluated. A panel of quantitative PCR (qPCR) assays was used to measure the fecal abundance of total bacteria and seven bacterial taxa: Bacteroides, Bifidobacterium, Clostridium hiranonis, Escherichia coli, Faecalibacterium, Streptococcus and Turicibacter. The nearest centroid classifier algorithm was used to calculate a dysbiosis index (DI) based on these qPCR abundances. RESULTS The abundances of total bacteria, Bacteroides, Bifidobacterium, C hiranonis, Faecalibacterium and Turicibacter were significantly decreased, while those of E coli and Streptococcus were significantly increased in cats with CE (P <0.027 for all). The DI in cats with CE was significantly higher compared with healthy cats (P <0.001). When the cut-off value of the DI was set at 0, it provided 77% (95% confidence interval [CI] 66-85) sensitivity and 96% (95% CI 89-99) specificity to differentiate the microbiota of cats with CE from those of healthy cats. Fifty-two of 68 cats with CE had a DI >0. CONCLUSIONS AND RELEVANCE A qPCR-based DI for assessing the fecal microbiota of cats was established. The results showed that a large proportion of cats with CE had an altered fecal microbiota as evidenced by an increased DI. Prospective studies are warranted to evaluate the utility of this assay for clinical assessment of feline CE.
Collapse
Affiliation(s)
- Chi-Hsuan Sung
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Sina Marsilio
- UC Davis School of Veterinary Medicine, Department of Veterinary Medicine and Epidemiology, University of California-Davis, Davis, CA, USA
| | - Betty Chow
- Veterinary Specialty Hospital, San Diego, CA, USA
- VCA Animal Specialty and Emergency Center, Los Angeles, CA, USA
| | | | | | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jörg M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - So Young Park
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Min-Pyo Hong
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Steve L Hill
- Veterinary Specialty Hospital, San Diego, CA, USA
- Flagstaff Veterinary Internal Medicine Consulting, Flagstaff, AZ, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Bottero E, Ferriani R, Benvenuti E, Ruggiero P, Astorina S, Giraldi M, Bertoldi L, Benvenuto G, Sattin E, Gianella P, Suchodolski JS. Clinical evaluation and microbiota analysis in 9 dogs with antibiotic-responsive enteropathy: A prospective comparison study. J Vet Intern Med 2022; 36:1220-1228. [PMID: 35621056 PMCID: PMC9308422 DOI: 10.1111/jvim.16443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
Background Antibiotic‐responsive enteropathy (ARE) is diagnosed by excluding other causes of diarrhea and when there is a short‐term response to administration of antibiotics. Objectives To characterize the gut microbiota and clinical trend of dogs with suspected ARE and to evaluate the variation in microbiota before (T0), after 30 days (T30) of tylosin treatment, and 30 days after discontinuation of treatment (T60). A further objective was to evaluate whether changes in gut microbiota are related to relapses of diarrhea when the therapy is tapered. Animals Study sample (group A) was composed of 15 dogs with chronic diarrhea, group B was composed of 15 healthy dogs. Group A was given tylosin for 30 days. Methods A multicentric prospective study. Clinical Indexes, fecal score, and samples for microbiota analysis were collected at T0, T30, and T60 in group A and T0 and T30 in group B. The gut microbiota was analyzed via 16S ribosomal RNA gene. Qiime2 version 2020.2 was used to perform bioinformatic analyses, and Alpha‐ and Beta‐diversity were computed. Results Diarrhea recurred after T30 in 9 of 14 dogs, which were classified as affected by ARE. At T0, a difference was noted in the beta‐diversity between groups (Bray Curtis metric P = .006). A T0‐T30 difference in alpha‐diversity was noted in group A (Shannon index P = .001, Faith PD P = .007). Conclusions and Clinical Importance Although tylosin influences the microbiota of dogs with ARE, we failed to find any specific characteristic in the microbiota of dogs with ARE.
Collapse
Affiliation(s)
- Enrico Bottero
- Endovet Group, Rome, Italy.,Ospedale Veterinario San Francesco, Milan, Italy
| | - Riccardo Ferriani
- Endovet Group, Rome, Italy.,Ospedale Veterinario San Francesco, Milan, Italy
| | | | | | - Simona Astorina
- Endovet Group, Rome, Italy.,Clinica Veterinaria Città di Catania, Catania, Italy
| | | | | | | | | | - Paola Gianella
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|