1
|
Zhao X, Liang Q, Feng H, Ru C, Wang L, Zhang K, Li J. The Analysis of Paratuberculosis Prevalence and Associated Performance Parameters in Dairy Cows from Xi'an City. Vet Sci 2025; 12:243. [PMID: 40266962 PMCID: PMC11946552 DOI: 10.3390/vetsci12030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
The aim of this study was to understand the status of Mycobacterium paratuberculosis infection in a large-scale dairy farm in Xi'an city and evaluate the impact via a "quarantine + elimination" model of bovine paratuberculosis on the production performance, reproductive performance, and economic benefits in said dairy farm. The paratuberculosis antibodies from 4488 dairy cow sera were detected by an ELISA kit, complemented by a comprehensive analysis of milk production parameters, health metrics, reproductive indices, and pharmaceutical expenditures (2021-2024). The results indicated that the paratuberculosis prevalence in the dairy farm gradually reduced from 6.76% (2021) to 3.58% (2024). It was also found that the paratuberculosis prevalence among dairy cows increased progressively with the increase in parity until the fifth calving, after which a significant decline was observed. The reduction in infection rates in the herd was correlated with measurable improvements in milk quality metrics, including elevated milk fat and protein content, extended shelf stability, and decreased somatic cell counts in milk. In addition, the reproductive performance of the dairy cows relatively improved with the decrease in paratuberculosis prevalence; there was a relative improvement in the reproductive performance of the dairy cows, which mainly occurred by the time of pregnancy at the first service of the cows, while the number of monthly occurrences of endometritis, diarrhea, calving intervals, and inseminations decreased. Further data correlation analysis showed that daily milk volume was positively correlated with lactase persistence (95% CI: 0.247-0.753, p = 0.001) and peaked at the day of milk production (95% CI: 0.135-0.698, p = 0.008) but was negatively correlated with parity (95% CI: -0.783--0.315). In addition, lactation time was positively correlated with 305-day milk volume (95% CI: 0.173-0.718, p < 0.004) and peaked at the day of milk production (95% CI: 0.265-0.761) but showed the opposite trend with the milk fat rate (95% CI: -0.633--0.018, p = 0.040) and milk protein rate (95% CI: -0.738--0.215, p = 0.002). Furthermore, milk loss was negatively correlated with peak milk production (95% CI: -0.758--0.258, p = 0.001). Intriguingly, the cost of medications for diarrhea exhibited a downward trend over the past three years. Taken together, these findings confirmed the necessity to reduce the incidence of Mycobacterium avium subsp. paratuberculosis in dairy cows and serve as a guide for the future successful and gradual eradication of paratuberculosis in Chinese dairy cow farms.
Collapse
Affiliation(s)
- Xuejian Zhao
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.Z.); (H.F.); (L.W.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Liang
- College of Pet Technology, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China;
| | - Haipeng Feng
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.Z.); (H.F.); (L.W.)
| | - Caixia Ru
- Xi’an Caotan Farm Co., Ltd., Xi’an 710038, China;
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.Z.); (H.F.); (L.W.)
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.Z.); (H.F.); (L.W.)
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.Z.); (H.F.); (L.W.)
| |
Collapse
|
2
|
Ghafouri F, Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Kastelic JP, Barkema HW, Shirali M. Integrated Analysis of Transcriptome Profiles and lncRNA-miRNA-mRNA Competing Endogenous RNA Regulatory Network to Identify Biological Functional Effects of Genes and Pathways Associated with Johne's Disease in Dairy Cattle. Noncoding RNA 2024; 10:38. [PMID: 39051372 PMCID: PMC11270299 DOI: 10.3390/ncrna10040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Paratuberculosis or Johne's disease (JD), a chronic granulomatous gastroenteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes huge economic losses and reduces animal welfare in dairy cattle herds worldwide. At present, molecular mechanisms and biological functions involved in immune responses to MAP infection of dairy cattle are not clearly understood. Our purpose was to integrate transcriptomic profiles and competing endogenous RNA (ceRNA) network analyses to identify key messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of peripheral blood mononuclear cells (PBMCs) for MAP infection in dairy cattle. In total, 28 lncRNAs, 42 miRNAs, and 370 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In this regard, we identified 21 hub genes (CCL20, CCL5, CD40, CSF2, CXCL8, EIF2AK2, FOS, IL10, IL17A, IL1A, IL1B, IRF1, MX2, NFKB1, NFKBIA, PTGS2, SOCS3, TLR4, TNF, TNFAIP3, and VCAM1) involved in MAP infection. Furthermore, eight candidate subnets with eight lncRNAs, 29 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment analysis of identified RNAs revealed 510, 22, and 11 significantly enriched GO terms related to MAP infection in biological process, molecular function, and cellular component categories, respectively. The main metabolic-signaling pathways related to MAP infection that were enriched included the immune system process, defense response, response to cytokine, leukocyte migration, regulation of T cell activation, defense response to bacterium, NOD-like receptor, B cell receptor, TNF, NF-kappa B, IL-17, and T cell receptor signaling pathways. Contributions of transcriptome profiles from MAP-positive and MAP-negative sample groups plus a ceRNA regulatory network underlying phenotypic differences in the intensity of pathogenicity of JD provided novel insights into molecular mechanisms associated with immune system responses to MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Vahid Dehghanian Reyhan
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (F.G.); (V.D.R.); (S.R.M.-A.)
| | - John P. Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (J.P.K.); (H.W.B.)
| | - Masoud Shirali
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5AJ, UK
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
| |
Collapse
|
3
|
Tejeda C, Steuer P, Villegas M, Ulloa F, Hernández-Agudelo JM, Salgado M. Evidence of Homeostatic Regulation in Mycobacterium avium Subspecies paratuberculosis as an Adaptive Response to Copper Stress. Microorganisms 2023; 11:microorganisms11040898. [PMID: 37110321 PMCID: PMC10141397 DOI: 10.3390/microorganisms11040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Bacteria are capable of responding to various stressors, something which has been essential for their adaptation, evolution, and colonization of a wide range of environments. Of the many stressors affecting bacteria, we can highlight heavy metals, and amongst these, copper stands out for its great antibacterial capacity. Using Mycobacterium tuberculosis (Mtb) as a model, the action of proteins involved in copper homeostasis has been put forward as an explanation for the tolerance or adaptive response of this mycobacteria to the toxic action of copper. Therefore, the aim of this study was to confirm the presence and evaluate the expression of genes involved in copper homeostasis at the transcriptional level after challenging Mycobacterium avium subsp. paratuberculoisis (MAP) with copper ions. Methodology: Buffer inoculated with MAP was treated with two stressors, the presence of copper homeostasis genes was confirmed by bioinformatics and genomic analysis, and the response of these genes to the stressors was evaluated by gene expression analysis, using qPCR and the comparative ΔΔCt method. Results: Through bioinformatics and genomic analysis, we found that copper homeostasis genes were present in the MAP genome and were overexpressed when treated with copper ions, which was not the case with H2O2 treatment. Conclusion: These results suggest that genes in MAP that code for proteins involved in copper homeostasis trigger an adaptive response to copper ions.
Collapse
Affiliation(s)
- Carlos Tejeda
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pamela Steuer
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Marcela Villegas
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Fernando Ulloa
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - José M. Hernández-Agudelo
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: ; Tel.: +56-63-2-444358; Fax: +56-63-293-233
| |
Collapse
|
4
|
Bao Y, Wu S, Yang T, Wang Z, Wang Y, Jiang X, Ma H. Analysis of long non-coding RNA expression profile of bovine monocyte-macrophage infected by Mycobacterium avium subsp. paratuberculosis. BMC Genomics 2022; 23:768. [PMID: 36418939 PMCID: PMC9685057 DOI: 10.1186/s12864-022-08997-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis. As a potential zoonotic pathogen, MAP also seriously threatens human health and social security. At present, long non-coding RNA (lncRNA) has attracted wide attention as an useful biomarker in various diseases. Therefore, our study analyzed the lncRNA expression profiles and lncRNA-mRNA regulatory network of MAP infected bovine monocytes-macrophages and uninfected bovine cells by high-throughput sequencing. A total of 4641 differentially expressed lncRNAs genes were identified, including 3111 up-regulated genes and 1530 down-regulated genes. In addition, lncRNA-mRNA interaction analysis was performed to predict the target genes of lncRNA. Among them, after MAP infection, 86 lncRNAs targeted to mRNA, of which only 6 genes were significantly different. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes significantly enriched in functional groups were related to immune regulation. Multiple signal pathways including NF-κB, NOD-like receptor, Cytokine-cytokine receptor, Toll-like receptor signaling pathway, Chemokine signaling pathway, and other important biochemical, metabolic and signal transduction pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, analysis of macrophage transcriptomes in response to MAP infection is expected to provide key information to deeply understand role of the pathogen in initiating an inappropriate and persistent infection in susceptible hosts and molecular mechanisms that might underlie the early phases of paratuberculosis.
Collapse
Affiliation(s)
- Yanhong Bao
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Shuiyin Wu
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Tianze Yang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China
| | - Zi Wang
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 China
| | - Yiming Wang
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| | - Xiuyun Jiang
- grid.464353.30000 0000 9888 756XCollege of Life Sciences, Jilin Agricultural University, Xincheng Street No.2888, Changchun, 130118 China ,grid.440668.80000 0001 0006 0255College of Life Sciences, Changchun Sci-Tech University, Changchun, 130600 P.R. China
| | - Hongxia Ma
- grid.464353.30000 0000 9888 756XCollege of Animal Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China ,grid.464353.30000 0000 9888 756XThe Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118 China
| |
Collapse
|
5
|
Are Reactive Oxygen Species (ROS) the Main Mechanism by Which Copper Ion Treatment Degrades the DNA of Mycobacterium avium subsp. paratuberculosis Suspended in Milk? Microorganisms 2022; 10:microorganisms10112272. [DOI: 10.3390/microorganisms10112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis. This pathogen is able to survive adverse environmental conditions, including the pasteurization process. Copper, a well-studied metal, is considered an important antibacterial tool, since it has been shown to inactivate even MAP in treated milk through unknown mechanisms. The aim of the present study is to show the effect of copper ions, and reactive oxygen species (ROS) generated in response to oxidative stress, on the damage to MAP DNA when exposed to a copper ion challenge in cow’s milk. Methodology: Spiked milk with different MAP bacterial loads was supplemented with blocking agents. These were either the copper chelators ethylenediaminetetraacetic acid (EDTA) and batocuproin (BCS) or the ROS quenchers D-mannitol, gallic acid and quercetin. The DNA protection, MAP viability and ROS production generated after exposure to a copper challenge were then measured. Results: In a bacterial load of 104 cells mL−1, blocking effects by both the copper chelators and all the ROS quenchers offered significant protection to MAP DNA. In a concentration of 102 cells mL−1, only D-mannitol and a mix of quenchers significantly protected the viability of the bacteria, and only at a concentration of 106 cells mL−1 was there a lower production of ROS when supplementing milk with gallic acid, quercetin and the mix of quenchers. Conclusion: Based on these findings, it may be concluded that MAP DNA damage can be attributed to the combined effect of the direct copper ions and ROS generated. Nevertheless, taking into account the antioxidant environment that milk provides, the direct effect of copper could play a prominent role.
Collapse
|
6
|
Association between calf rearing technology and farm-level paratuberculosis infection in Hungarian dairy farms. Prev Vet Med 2022; 207:105719. [DOI: 10.1016/j.prevetmed.2022.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
|
7
|
Tejeda C, Steuer P, Villegas M, Reyes-Jara A, Iranzo EC, Umaña R, Salgado M. More Insights about the Efficacy of Copper Ion Treatment on Mycobacterium avium subsp. paratuberculosis (MAP): A Clue for the Observed Tolerance. Pathogens 2022; 11:pathogens11020272. [PMID: 35215214 PMCID: PMC8880281 DOI: 10.3390/pathogens11020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Scientific evidence is scarce for the antimicrobial effect of copper on bacteria characterized as more resistant. Using Mycobacterium avium subsp. paratuberculosis (MAP), a highly resistant microorganism, as a pathogen model, copper ion treatment has shown a significant bactericidal effect; however, the sustainability of MAP against copper toxicity was also reported in several studies. Accordingly, the present study aimed to evaluate the impacts of copper on MAP. Methodology: This study considered physicochemical properties and copper concentration in a buffer since it could modulate MAP response during the application of copper treatment. Results: Despite the efficacy of copper ions in significantly reducing the MAP load in Phosphate Buffered Saline, some MAP cells were able to survive. The copper concentration generated by the copper ion treatment device increased significantly with increasing exposure times. MAP bacterial load decreased significantly when treated with copper ions as the exposure times increased. An increase in pH decreased oxygen consumption, and an increase in conductivity was reported after treatment application. Conclusions: Even with higher concentrations of copper, the efficacy of MAP control was not complete. The concentration of copper must be a key element in achieving control of highly resistant microorganisms.
Collapse
Affiliation(s)
- Carlos Tejeda
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.T.); (P.S.); (M.V.); (R.U.)
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pamela Steuer
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.T.); (P.S.); (M.V.); (R.U.)
| | - Marcela Villegas
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.T.); (P.S.); (M.V.); (R.U.)
| | - Angelica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 8330015, Chile;
| | - Esperanza C. Iranzo
- Laboratorio de Manejo y Conservación de Vida Silvestre, Instituto de Ciencia Animal y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Reydoret Umaña
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.T.); (P.S.); (M.V.); (R.U.)
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.T.); (P.S.); (M.V.); (R.U.)
- Correspondence: ; Tel.: +56-63-2-444358; Fax: +56-63-293-233
| |
Collapse
|