1
|
Rostamzadeh Mahdabi E, Tian R, Tian J, Asadollahpour Nanaie H, Wang X, Zhao M, Li H, Dalai B, Sai Y, Guo W, Li Y, Zhang H, Esmailizadeh A. Uncovering genomic diversity and signatures of selection in red Angus × Chinese red steppe crossbred cattle population. Sci Rep 2025; 15:12977. [PMID: 40234714 PMCID: PMC12000499 DOI: 10.1038/s41598-025-98346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
Crossbreeding is a cornerstone of modern livestock improvement, combining desirable traits to enhance productivity and environmental resilience. This study conducts the first comprehensive genomic analysis of Red Angus × Chinese Red Steppe (RACS) crossbred cattle, evaluating their genetic architecture, diversity, and selection signatures relative to founder breeds (Red Angus and Chinese Red Steppe) and global populations. A total of 119 cattle, comprising 104 RACS crossbreds and 15 Chinese Red Steppes cattle, were genotyped using the GGP Bovine 100k SNP array. Additionally, the public available genotypic data generated using the BovineSNP50 chip from 550 animals across eight beef breeds (Angus, Hereford, Limousin, Charolais, Mongolian, Shorthorn, Red Angus, and Simmental) and one dairy breed (Holstein) were incorporated into the analysis. We aimed to (1) define the population structure of RACS cattle, (2) quantify their genomic diversity and inbreeding levels, and (3) pinpoint regions under selection linked to adaptive and economic traits. We employed runs of homozygosity (ROH) and population differentiation (Fst) analyses to detect selection signals. The results revealed that the crossbred (RACS), Angus, and Red Angus breeds exhibited similar clustering patterns in principal component analysis (PCA), but the crossbred population showed the highest nucleotide diversity and lowest inbreeding coefficients compared to other breeds. Notably, candidate regions associated with immune response, cold adaptation, and carcass traits were identified within the RACS population. These findings enhance our understanding of the genetic makeup of crossbred beef cattle and highlight their potential for genetic improvement, informing future selection and breeding strategies aimed at optimizing beef production in challenging environments.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran
| | - Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Jing Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | | | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yin Sai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenhua Guo
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Forestry and Grassland Bureau of Siziwang Banner, Wulanchabu, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, PO BOX 76169-133, Kerman, Iran.
| |
Collapse
|
2
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Gomez Proto G, Mancin E, Sartori C, Mantovani R. Unraveling inbreeding patterns and selection signals in Alpine Grey cattle. Animal 2024; 18:101159. [PMID: 38718700 DOI: 10.1016/j.animal.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Inbreeding plays a crucial role in livestock breeding, influencing genetic diversity and phenotypic traits. Genomic data have helped address limitations posed by incomplete pedigrees, providing deeper insights into breed genetic diversity. This study assesses inbreeding levels via pedigree and genomic approaches and analyzes old and recent inbreeding using runs of homozygosity (ROH), and selection signals in Alpine Grey cattle. Pedigree data from 165 575 individuals, analyzed with INBUPGF90 software, computed inbreeding coefficients. Genomic-based coefficients derived from PLINK v1.9. or DetectRUNS R package analyses of 1 180 individuals' genotypes. Common single nucleotide polymorphisms within ROH pinpointed genomic regions, aggregating into "ROH islands" indicative of selection pressure. Overlaps with USCS Genome Browser unveiled gene presence. Moderate correlations (0.20-0.54) existed between pedigree and genomic coefficients, with most genomic estimators having higher (>0.8) correlation values. Inbreeding averaged 0.04 in < 8 Mb ROH segments, and 0.03 in > 16 Mb segments; > 90% of ROHs were < 8 Mb, indicating ancient inbreeding prevalence. Recent inbreeding proved less detrimental than in cosmopolitan breeds. Two major ROH islands on chromosomes 6 and 7 harbored genes linked to immune response, disease resistance (PYURF, HERC3), and fertility (EIF4EBP3, SRA1). This study underscores the need for detailed inbreeding analyses to understand genetic characteristics and historical changes in local breeds like Alpine Grey cattle. Genomic insights, especially from ROH, facilitated overcoming pedigree limitations, illuminating breed genetic diversity. Our findings reveal ancient inbreeding's enduring genetic impact and ROH islands potential for selective sweeps, elucidating traits in Alpine Grey cattle.
Collapse
Affiliation(s)
- G Gomez Proto
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - E Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - R Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
4
|
Visser C, Lashmar SF, Reding J, Berry DP, van Marle-Köster E. Pedigree and genome-based patterns of homozygosity in the South African Ayrshire, Holstein, and Jersey breeds. Front Genet 2023; 14:1136078. [PMID: 37007942 PMCID: PMC10063850 DOI: 10.3389/fgene.2023.1136078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
The erosion of genetic diversity limits long-term genetic gain and impedes the sustainability of livestock production. In the South African (SA) dairy industry, the major commercial dairy breeds have been applying estimated breeding values (EBVs) and/or have been participating in Multiple Across Country Evaluations (MACE). The transition to genomic estimated breeding values (GEBVs) in selection strategies requires monitoring of the genetic diversity and inbreeding of current genotyped animals, especially considering the comparatively small population sizes of global dairy breeds in SA. This study aimed to perform a homozygosity-based evaluation of the SA Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy cattle breeds. Three sources of information, namely 1) single nucleotide polymorphism (SNP) genotypes (3,199 animals genotyped for 35,572 SNPs) 2) pedigree records (7,885 AYR; 28,391 HST; 18,755 JER), and 3) identified runs of homozygosity (ROH) segments were used to quantify inbreeding related parameters. The lowest pedigree completeness was for the HST population reducing from a value of 0.990 to 0.186 for generation depths of one to six. Across all breeds, 46.7% of the detected ROH were between 4 megabase pairs (Mb) and 8 Mb in length. Two conserved homozygous haplotypes were identified in more than 70% of the JER population on Bos taurus autosome (BTA) 7. The JER breed displayed the highest level of inbreeding across all inbreeding coefficients. The mean (± standard deviation) pedigree-based inbreeding coefficient (FPED) ranged from 0.051 (±0.020) for AYR to 0.062 (±0.027) for JER, whereas SNP-based inbreeding coefficients (FSNP) ranged from 0.020 (HST) to 0.190 (JER) and ROH-based inbreeding coefficients, considering all ROH segment coverage (FROH), ranged from 0.053 (AYR) to 0.085 (JER). Within-breed Spearman correlations between pedigree-based and genome-based estimates ranged from weak (AYR: 0.132 between FPED and FROH calculated for ROH <4Mb in size) to moderate (HST: 0.584 between FPED and FSNP). Correlations strengthened between FPED and FROH as the ROH length category was considered lengthened, suggesting a dependency on breed-specific pedigree depth. The genomic homozygosity-based parameters studied proved useful in investigating the current inbreeding status of reference populations genotyped to implement genomic selection in the three most prominent South African dairy cattle breeds.
Collapse
Affiliation(s)
- Carina Visser
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Simon Frederick Lashmar
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jason Reding
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Donagh P. Berry
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Animal and Grassland Research and Innovation Centre, Teagasc, Co. Cork, Ireland
| | - Esté van Marle-Köster
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Cortes-Hernández JG, Ruiz-López FJ, Vásquez-Peláez CG, García-Ruiz A. Runs of homocigosity and its association with productive traits in Mexican Holstein cattle. PLoS One 2022; 17:e0274743. [PMID: 36121861 PMCID: PMC9484644 DOI: 10.1371/journal.pone.0274743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to describe the runs of homozygosity (ROH) detected in the Mexican Holstein population and to associate them with milk, fat and protein yields, and conformation final score. After imputation and genomic quality control, 4,227 genotyped animals with 100,806 SNPs markers each were used. ROH with a minimum length of 1 Mb and a minimum of 10 SNPs were included in the analysis. One heterozygous SNP marker and five missing genotypes per ROH were allowed. A total of 425,098 ROH were found in the studied population (71.83 ± 10.73 ROH per animal), with an average length and coverage of 4.80 ± 0.77 Mb, and 276.89 Mb, respectively. The average chromosome length covered by ROH was 10.40 ± 3.70 Mb. ROH between 1 and 2 Mb were the most frequent in the population (51.33%) while those between 14 and 16 Mb were the least frequent (1.20%). Long chromosomes showed a larger number of ROH. Chromosomes 10 and 20, had a greater percentage of their length covered by ROH because they presented a largest number of long ROH (>8 Mb). From the total ROH, 17 were detected in 1,847 animals and distributed among different chromosomes, and were associated with milk, fat and protein yield and percentage, and conformation final score. Of the ROH with effects on production traits, the majority were found with a length between 1 and 4 Mb. These results show evidence of genomic regions preserved by genetic selection and associated with the improvement of the productivity and functionality of dairy cattle.
Collapse
Affiliation(s)
- José G. Cortes-Hernández
- Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Felipe J. Ruiz-López
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
| | - Carlos G. Vásquez-Peláez
- Departamento de Genética y Bioestadística de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana García-Ruiz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
- * E-mail:
| |
Collapse
|