1
|
Tsiamadis V, Valergakis GE, Soufleri A, Arsenos G, Banos G, Karamanlis X. Identification of temporal patterns of environmental heat stress of Holstein dairy heifers raised in Mediterranean climate during their in-utero and post-natal life periods and modelling their effects on age at first calving. J Therm Biol 2023; 117:103717. [PMID: 37774438 DOI: 10.1016/j.jtherbio.2023.103717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
A retrospective study was conducted to evaluate temporal patterns of environmental heat stress during the in-uterus period of development (IUP) and the 3-month post-natal (PN) period of dairy heifers, and to estimate their association with the age at first calving (AFC). Data from 30 dairy herds in Northern Greece including 9098 heifers were extracted from National Cattle Database. Data (2005-2019) regarding 230,100 farm-specific ambient daily temperature and relative humidity records, were obtained from ERA5-Land. Average monthly Temperature-Humidity-Index values (THI; low≤68, and high>68) were calculated and matched for each heifer to their IUP and PN. Subsequently, Cluster Analysis was used with monthly THIs as predictors to allocate heifers to THI clusters. The association of clusters with AFC was assessed with Generalized Linear Mixed Model analysis, an extended form of multiple linear regression. Finally, 8 Heat Stress Clusters (HSC; namely HSC-1 to HSC-8) were identified. Compared to HSC-8 (8th-9th IUP months and 1st PN month) heifers of HSC-5 (4th-7th IUP months) and HSC-6 (6th-8th IUP months) calved 13.8 and 17.8 days later, respectively (P < 0.01-0.001). Moreover, when AFC was treated as a binary variable, heifers of HSC-5 and HSC-6 had 1.15 and 1.34 (P < 0.01-0.001) higher risk of calving for the first time later than 787 days compared to HSC-8, respectively.
Collapse
Affiliation(s)
- V Tsiamadis
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - G E Valergakis
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - A Soufleri
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - G Arsenos
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - G Banos
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Scotland's Rural College, Roslin Institute Building, EH25 9RG, Midlothian, Scotland, UK
| | - X Karamanlis
- Department of Ecology and Environmental Protection, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Zhang C, Wang S, Hu L, Fang H, Chen G, Ma X, Yu Y, Wang Y, Xu Q. Analysis of CircRNA Expression in Peripheral Blood of Holstein Cows in Response to Heat Stress. Int J Mol Sci 2023; 24:10150. [PMID: 37373298 DOI: 10.3390/ijms241210150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The present study aimed to identify key circRNAs and pathways associated with heat stress in blood samples of Holstein cows, which will provide new insights into the molecular mechanisms driving heat stress in cows. Hence, we evaluated changes in milk yield, rectal temperature, and respiratory rate of experimental cows between heat stress (summer) and non-heat stress (spring) conditions with two comparisons, including Sum1 vs. Spr1 (same lactation stage, different individuals, 15 cows per group) and Sum1 vs. Spr2 (same individual, different lactation stages, 15 cows per group). Compared to both Spr1 and Spr2, cows in the Sum1 group had a significantly lower milk yield, while rectal temperature and respiratory rate were significantly higher (p < 0.05), indicating that cows in the Sum1 group were experiencing heat stress. In each group, five animals were chosen randomly to undergo RNA-seq. The results reveal that 140 and 205 differentially expressed (DE) circRNAs were screened in the first and second comparisons, respectively. According to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DE circRNAs were mainly enriched in five signaling pathways, including choline metabolism, the PI3K/AKT signaling pathway, the HIF-1 signaling pathway, the longevity-regulating pathway, and autophagy. Then, we obtained the top 10 hub source genes of circRNAs according to the protein-protein interaction networks. Among them, ciRNA1282 (HIF1A), circRNA4205 (NR3C1), and circRNA12923 (ROCK1) were enriched in multiple pathways and identified as binding multiple miRNAs. These key circRNAs may play an important role in the heat stress responses of dairy cows. These results provide valuable information on the involvement of key circRNAs and their expression pattern in the heat stress response of cows.
Collapse
Affiliation(s)
- Congcong Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shuhui Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Lirong Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Gong Chen
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaojuan Ma
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|