1
|
Lu Z, Zhang T, Zhao Y, Pang Y, Guo M, Zhu X, Li Y, Li Z. The influence of host genotype and gut microbial interactions on feed efficiency traits in pigs. Front Microbiol 2024; 15:1459773. [PMID: 39606106 PMCID: PMC11599184 DOI: 10.3389/fmicb.2024.1459773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Feed efficiency and growth performance are economically important traits in pigs. Precious studies have been revealed that both genetics and gut microbes could influence host phenotypes, however, the mechanisms by which they affect pig growth and feed efficiency remain poorly understood. In this study, 361 crossbred Duroc × (Landrace × Yorkshire) commercial pigs were genotyped using GeneSeek Porcine SNP50K BeadChip, and the microbiotas from fecal samples were acquired using microbial 16S rRNA gene sequencing technology to investigate the impact of host genetics and gut microorganisms on growth and feed efficiency. The results showed that the heritability and enterobacterial force ranged from 0.27 to 0.46 and 0 to 0.03, respectively. Genome-wide association studies (GWAS) identified seven significant SNPs to be associated with growth and feed efficiency, and several genes, including AIF1L, ASS1, and QRFP were highlighted as candidates for the analyzed traits. Additionally, microbiome-genome-wide association studies GWAS revealed potential links between CCAR2, EGR3, GSTM3, and GPR61 genes and the abundance of microorganisms, such as Trueperella, Victivallis, and Erysipelatoclostridium. In addition, six microbial genera linked to growth and feed efficiency were identified as follows Lachnospiraceae_UCG-005, Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotella_9, and Veillonella. Our findings provide novel insights into the factors influencing host phenotypic complexity and identify potential microbial targets for enhancing pig feed efficiency through selective breeding. This could aid in the development of strategies to manipulate the gut microbiota to optimize growth rates and feed efficiency in pig breeding.
Collapse
Affiliation(s)
- Zhuoda Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Tao Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Yunxiang Zhao
- Guangxi Yangxiang Co., Ltd., Guigang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqin Pang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meng Guo
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Xiaoping Zhu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Ying Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhili Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
2
|
Giovannini S, Chessari G, Riggio S, Marletta D, Sardina MT, Mastrangelo S, Sarti FM. Insight into the current genomic diversity, conservation status and population structure of Tunisian Barbarine sheep breed. Front Genet 2024; 15:1379086. [PMID: 38881792 PMCID: PMC11176520 DOI: 10.3389/fgene.2024.1379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Local livestock breeds play a crucial role in global biodiversity, connecting natural and human-influenced environments and contributing significantly to ecosystem services. While commercial breeds dominate industrial systems, local livestock breeds in developing countries, like Barbarine sheep in Tunisia, are vital for food security and community maintenance. The Tunisian Barbarine sheep, known for its adaptability and distinctive fat-tailed morphology, faces challenges due to historical crossbreeding. In this study, the Illumina Ovine SNP50K BeadChip array was used to perform a genome-wide characterization of Tunisian Barbarine sheep to investigate its genetic diversity, the genome structure, and the relationship within the context of Mediterranean breeds. The results show moderate genetic diversity and low inbreeding. Runs of Homozygosity analysis find genomic regions linked to important traits, including fat tail characteristics. Genomic relationship analysis shows proximity to Algerian thin-tailed breeds, suggesting crossbreeding impacts. Admixture analysis reveals unique genetic patterns, emphasizing the Tunisian Barbarine's identity within the Mediterranean context and its closeness to African breeds. Current results represent a starting point for the creation of monitoring and conservation plans. In summary, despite genetic dilution due to crossbreeding, the identification of genomic regions offers crucial insights for conservation. The study confirms the importance of preserving unique genetic characteristics of local breeds, particularly in the face of ongoing crossbreeding practices and environmental challenges. These findings contribute valuable insights for the sustainable management of this unique genetic reservoir, supporting local economies and preserving sheep species biodiversity.
Collapse
Affiliation(s)
- Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Donata Marletta
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Selionova M, Aibazov M, Sermyagin A, Belous A, Deniskova T, Mamontova T, Zharkova E, Zinovieva N. Genome-Wide Association and Pathway Analysis of Carcass and Meat Quality Traits in Karachai Young Goats. Animals (Basel) 2023; 13:3237. [PMID: 37893961 PMCID: PMC10603756 DOI: 10.3390/ani13203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. The work aimed to search for candidate genes related to body measurements and body weight of Karachai goats and develop an experimental PCR-RV test system for genotyping significant SNPs. Comparison of GWAS results for ages 4 and 8 months revealed 58 common SNPs for significant genotypes. 11 common SNPs were identified for body weight, 4 SNPs-for group of traits withers height, rump height, body length, 2 SNPs-for withers height and rump height, 1 SNP-for body length and chest depth. Structural annotation of genomic regions covering a window of ±0.20 Mb showed the presence of 288 genes; 52 of them had the described functions in accordance with gene ontology. The main molecular functions of proteins encoded by these genes are the regulation of transcription, cell proliferation, angiogenesis, body growth, fatty acid and lipid metabolism, nervous system development, and spermatogenesis. SNPs common to body weight and localized within a window of ±200 kb from the structural genes CRADD, HMGA2, MSRB3, FUT8, MAX, and RAB15 were selected to create a test system. The study of meat productivity after slaughter and chemical analysis of muscle tissue in Karachai goats at the age of 8 months of different genotypes according to the identified SNPs revealed that rs268269710 is the most promising for further research and use in breeding. The GG genotype is associated with a larger live weight of animals, a larger carcass yield, the content of the boneless part in it, and the ratio of protein and adipose tissue in meat preferred for dietary nutrition. These results will contribute to the genetic improvement of Karachai goats.
Collapse
Affiliation(s)
- Marina Selionova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Magomet Aibazov
- North Caucasian Agrarian Center, Zootechnicheski 15, 355017 Stavropol, Russia;
| | - Alexander Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Anna Belous
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Deniskova
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| | - Tatiana Mamontova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Ekaterina Zharkova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Street, 41, 127343 Moscow, Russia; (M.S.); (T.M.)
| | - Natalia Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Moscow, Russia; (A.S.); (A.B.); (T.D.); (N.Z.)
| |
Collapse
|
4
|
Giovannini S, Strillacci MG, Bagnato A, Albertini E, Sarti FM. Genetic and Phenotypic Characteristics of Belted Pig Breeds: A Review. Animals (Basel) 2023; 13:3072. [PMID: 37835678 PMCID: PMC10571877 DOI: 10.3390/ani13193072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.
Collapse
Affiliation(s)
- Samira Giovannini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Maria Giuseppina Strillacci
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Alessandro Bagnato
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| |
Collapse
|
5
|
Li X, Yang Y, Li L, Ren M, Zhou M, Li S. Transcriptome Profiling of Different Developmental Stages on Longissimus Dorsi to Identify Genes Underlying Intramuscular Fat Content in Wannanhua Pigs. Genes (Basel) 2023; 14:genes14040903. [PMID: 37107661 PMCID: PMC10137702 DOI: 10.3390/genes14040903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Intramuscular fat (IMF) is a key index to measure the tenderness and flavor of pork. Wannanhua pig, a famous indigenous pig breed in Anhui Province, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model for investigating the lipid position trait mechanisms in pigs. However, the regulatory mechanisms of lipid deposition and development in pigs remain unclear. Furthermore, the temporal differences in gene regulation are based on muscle growth and IMF deposition. The purpose of this study was to study the expression changes of longissimus dorsi (LD) at different growth stages of WH pigs at the molecular level, to screen the candidate genes and signaling pathways related to IMF during development by transcriptome sequencing technology, and to explore the transcriptional regulation mechanism of IMF deposition-related genes at different development stages. In total, 616, 485, and 1487 genes were differentially expressed between LD60 and LD120, LD120 and LD240, and LD60 and LD240, respectively. Numerous differentially expressed genes (DEGs) associated with lipid metabolism and muscle development were identified, and most of them were involved in IMF deposition and were significantly up-regulated in LD120 and LD240 compared to LD60. STEM (Short Time-series Expression Miner) analysis indicated significant variations in the mRNA expression across distinct muscle development stages. The differential expression of 12 selected DEGs was confirmed by RT-qPCR. The results of this study contribute to our understanding of the molecular mechanism of IMF deposition and provide a new way to accelerate the genetic improvement of pork quality.
Collapse
Affiliation(s)
- Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yanan Yang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
6
|
Easa AA, Selionova M, Aibazov M, Mamontova T, Sermyagin A, Belous A, Abdelmanova A, Deniskova T, Zinovieva N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes (Basel) 2022; 13:genes13101773. [PMID: 36292658 PMCID: PMC9601913 DOI: 10.3390/genes13101773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to identify the SNPs and candidate genes related to body weight and seven body conformation traits at the age of 8 months in the Russian aboriginal Karachai goats (n = 269) by conducting genome-wide association studies (GWAS), using genotypes generated by Goat SNP BeadChip (Illumina Inc., USA). We identified 241 SNPs, which were significantly associated with the studied traits, including 47 genome-wide SNPs (p < 10−5) and 194 suggestive SNPs (p < 10−4), distributed among all goat autosomes except for autosome 23. Fifty-six SNPs were common for two and more traits (1 SNP for six traits, 2 SNPs for five traits, 12 SNPs for four traits, 20 SNPs for three traits, and 21 SNPs for two traits), while 185 SNPs were associated with single traits. Structural annotation within a window of 0.4 Mb (±0.2 Mb from causal SNPs) revealed 238 candidate genes. The largest number of candidate genes was identified at Chr13 (33 candidate genes for the five traits). The genes identified in our study were previously reported to be associated with growth-related traits in different livestock species. The most significant genes for body weight were CRADD, HMGA2, MSRB3, MAX, HACL1 and RAB15, which regulate growth processes, body sizes, fat deposition, and average daily gains. Among them, the HMGA2 gene is a well-known candidate for prenatal and early postnatal development, and the MSRB3 gene is proposed as a candidate gene affecting the growth performance. APOB, PTPRK, BCAR1, AOAH and ASAH1 genes associated with withers height, rump height and body length, are involved in various metabolic processes, including fatty acid metabolism and lipopolysaccharide catabolism. In addition, WDR70, ZBTB24, ADIPOQ, and SORCS3 genes were linked to chest width. KCNG4 was associated with rump height, body length and chest perimeter. The identified candidate genes can be proposed as molecular markers for growth trait selection for genetic improvement in Karachai goats.
Collapse
Affiliation(s)
- Ahmed A. Easa
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (A.A.E.); (N.Z.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Magomet Aibazov
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Tatiana Mamontova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Alexander Sermyagin
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anna Belous
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Alexandra Abdelmanova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Tatiana Deniskova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Natalia Zinovieva
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
- Correspondence: (A.A.E.); (N.Z.)
| |
Collapse
|