1
|
Guo W, Hou H, Cheng Y, Huang Y, Ran T, Zhu Z, Huang Y, Jiao J, An S. Microplastics migration mechanisms in high-erosion watersheds under climate warming. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138184. [PMID: 40199077 DOI: 10.1016/j.jhazmat.2025.138184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/10/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Abstract
Understanding Microplastics (MPs) migration in small watersheds is crucial for pollution management, but progress has been hindered by limited long-term data and modeling approaches. This study investigated three watersheds on the Qinghai-Xizang Plateau, each with distinct land uses (grassland, cropland, urban). Using 15 years of sediment data, a novel MPs migration model was developed with machine learning (RF, SHAP, DNN), achieving exceptionally high accuracy in source tracing (R² = 0.93) and pathway analysis (R² = 0.97). The results revealed that under conditions of sediment thickness < 6.5 cm (Scenario 1), MPs primarily migrated from cropland to sediment driven by southerly winds and surface runoff, with an MPs migration flux (nMPs) of 2.09 × 10⁴ items/m² and an MPs migration content (ρMPs) of 372.99 items/kg. For sediment thicknesses between 6.5 and 10 cm (Scenario 2), contributions from both cropland and grassland led to a 127.6 % increase in nMPs. When sediment thickness exceeds 10 cm (Scenario 3), grassland contributions become more significant, leading to a 284.52 % increase in nMPs and a 21.31 % reduction in ρMPs. Between 2000 and 2020, climate warming significantly intensified extreme precipitation (p < 0.05), shifting MPs migration patterns toward Scenario 3. Future projections (2030-2100) under a high-emission scenario indicated MPs migration and contents would increase by 111.64 % and 4.29 items/kg per decade, respectively. Under a low-emission scenario, migration would decrease by 1.48 % per decade, while MPs content would slightly increase by 1.05 items/kg per decade. This study provides a robust modeling framework for understanding MPs migration and supporting sustainable pollution management.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuzhuo Cheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yudan Huang
- Pingyin County Agriculture and Rural Bureau, Pingyin 250400, China
| | - Taishan Ran
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhaolong Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China.
| | - Juying Jiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Orozco-Hernández JM, Hernández-Varela JD, Gómez-Oliván LM, Chanona-Pérez JJ, Hernández-Díaz M, Juan-Reyes NS, Rosales-Pérez KE, Juan-Reyes SS. Toxic interactions between fluoxetine and microplastics in zebrafish embryonic development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179040. [PMID: 40048949 DOI: 10.1016/j.scitotenv.2025.179040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
The increasing use of antidepressants, especially fluoxetine (FLX), has resulted in their presence in aquatic environments due to wastewater discharges from municipal, industrial, and hospital sources. Simultaneously, microplastics (MPs) have been extensively studied in short-term (acute) exposures, showing adverse effects such as oxidative stress, behavioral alterations and neurotoxicity. However, the embryotoxic and teratogenic effects of these compounds, as well as their impacts on the survival, development, morphology, behavior, and reproduction of fish embryos in aquatic ecosystems, remain limited. This study evaluated the toxic effects of FLX (5, 40 ng/L), MPs (25, 100 particles/L) and their mixtures (FLX-MPs) at environmentally relevant concentrations. Microscopic characterization of fluorescent MPs was performed, and their presence was evaluated in Danio rerio embryos at 24 and 96 hpf, observing their localization in the chorion. In embryotoxicity and teratogenesis tests, FLX (100 ng/L) increased the rate of malformations, including deformations of the spine (CD), tail (TM) and hypopigmentation (H); MPs induced scoliosis (S), tail deformation (TM), incomplete hatching (IE) and a dose-dependent increase in malformations. FLX-MPs mixtures caused pericardial edema (PE), tail and spine deformation, delayed hatching (HR) and increased mortality. Oxidative damage analysis showed that FLX (40 ng/L) dose-dependently increased SOD and CAT activities, with an increase in cellular oxidation biomarkers (LPX, POX, HPX). Besides, MPs (100 particles/L) showed similar effects, with increased SOD, CAT, POX and HPX activities. The FLX-MPs mixture showed the most pronounced response. In gene expression, FLX (5, 40 ng/L) modulated genes such as bax, blc2 and casp3. MPs (25, 100 particles/L) induced the expression of bax, blc2, p53 and casp3. FLX-MPs mixtures (25 particles/L-40 ng/L, 100 particles/L-40 ng/L) expressed nfr1, p53, nfe2l2a and casp3. Histological damage revealed abnormal muscle fibers (AMF) and yolk sac edema (YSE) at 40 ng/L FLX, and lamellar fusion (LF) and scoliosis (S) in MPs (100 particles/L). Brain swelling (IBT) and neuromast loss (NL) were detected in FLX-MPs mixtures. In conclusion, both FLX and MPs and their combinations affect the embryonic development and physiological state of Danio rerio.
Collapse
Affiliation(s)
- José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Josué David Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Misael Hernández-Díaz
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Nely San Juan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sindy San Juan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
3
|
Dursun C, Karaoğlu K, Avcı A, Gül S, Özdemir N, Üzüm N, Olgun K. The presence of microplastics in Baran's newt (Neurergus barani Öz, 1994) and the spotted newt (Neurergus strauchii Steindachner, 1887). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55974-55983. [PMID: 39249613 DOI: 10.1007/s11356-024-34927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Microplastics (MPs), tiny plastic particles less than 5 mm in size, have emerged as a common and worrying pollutant in marine, freshwater, and terrestrial environments worldwide. In this study, we revealed the microplastic exposure of two endemic newt species for Türkiye. We found that polyethylene terephthalate (PET) was the predominant microplastic polymer type in both species, with the blue fiber shape in particular. We also found that there was a negative correlation between microplastic size and gastrointestinal tract (GIT) weight, but there was no significant difference between body length and GIT weight of both species. Our findings might be surprising as the studied species live in natural spring waters in remote, high-altitude areas. However, the detection of water bottles in their habitats appears to be the reason for their exposure to microplastic pollution. Therefore, reducing the use of single-use plastics is predicted to contribute to the conservation of these endemic newts.
Collapse
Affiliation(s)
- Cantekin Dursun
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye
| | - Kaan Karaoğlu
- Department of Chemical and Chemical Processing Technologies, Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye
| | - Aziz Avcı
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| | - Serkan Gül
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| | - Nurhayat Özdemir
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, 61080, Türkiye
| | - Nazan Üzüm
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| | - Kurtuluş Olgun
- Department of Biology, Faculty of Sciences, Aydın Adnan Menderes University, 09010, Kepez, Aydın, Türkiye
| |
Collapse
|
4
|
Varshney S, O'Connor OL, Gora AH, Rehman S, Kiron V, Siriyappagouder P, Dahle D, Kögel T, Ørnsrud R, Olsvik PA. Mixture toxicity of 6PPD-quinone and polystyrene nanoplastics in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123835. [PMID: 38521395 DOI: 10.1016/j.envpol.2024.123835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution, including micro- and nanoplastics, is a growing concern. Tyre-wear particles (TWPs) are the second largest source of microplastics in the ocean following abrasion of synthetic fibres. In addition to the particles themselves, TWPs contain many harmful chemicals, including 6PPD. This chemical reacts with atmospheric ozone and forms the toxic compound 6PPD-quinone (6PPDq), which poses a danger to aquatic life. There is a knowledge gap in understanding risks associated with the combined toxicity of nanoplastics (NPs) and 6PPDq. The present study aimed to investigate the toxicity of NPs and 6PPDq on adult zebrafish using phenotypic (behaviour, histology) and transcriptomic endpoints. Zebrafish were exposed to four treatments: control (contaminant-free), 50 μg/L 6PPDq, 3 mg/L polystyrene (PS)-NPs, and a combination of 50 μg/L 6PPDq and 3 mg/L PS-NPs. We did not observe locomotory dysregulation in zebrafish exposed to NPs. However, we found significant hyperlocomotion in zebrafish exposed to 6PPDq and this effect was even more substantial after co-exposure with PS-NPs. This study explores the molecular mechanisms behind these effects, identifying genes associated with neurotransmitters and fatty acid metabolism that were dysregulated by the co-exposure. Transcriptomic analysis further showed that both 6PPDq and PS-NPs impacted cellular processes associated with sterol biosynthesis, cholesterol metabolism, and muscle tissue development. The effects on these mechanisms were stronger in co-exposed zebrafish, indicating a heightened risk to cellular integrity and mitochondrial dysfunction. These results highlight the significance of mixture toxicity when studying the effects of NPs and associated chemicals like 6PPDq.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Olivia L O'Connor
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tanja Kögel
- Institute of Marine Research, Bergen, Norway
| | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway; Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
5
|
Szkudlarek M, Najbar B, Jankowiak Ł. Similarity of Microplastic Characteristics between Amphibian Larvae and Their Aquatic Environment. Animals (Basel) 2024; 14:717. [PMID: 38473103 PMCID: PMC10930510 DOI: 10.3390/ani14050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Microplastics, pervasive environmental pollutants, are found across various ecosystems, including small inland water bodies. They are reported in different environmental media, yet little is known about the mutual relationships of microplastics' properties across components of small inland water bodies. Here, having extracted and analyzed these particles from water, sediment, and amphibian larvae from 23 sites, we test within-site similarities regarding shape (morphological type), color, and chemical composition (polymer type). We also provide a brief characterization of the microplastics extracted from water and sediment regarding these parameters. We observed a statistically significant similarity of microplastics' shapes and colors between those extracted from water and amphibian larvae. Such a similarity, though less pronounced, was also found between amphibian larvae and sediment. However, the chemical composition (polymer type) of the microplastics from water, sediment, and amphibian larvae did not exhibit any similarities beyond what would be expected by chance. The observed congruence in the colors and shapes of microplastics between amphibian larvae and their corresponding aquatic habitats underscores the profound interconnectedness among the constituents of freshwater ecosystems.
Collapse
Affiliation(s)
- Michał Szkudlarek
- Department of Zoology, Institute of Biological Sciences, University of Zielona Góra, Profesora Zygmunta Szafrana 1, 65-516 Zielona Góra, Poland
- Doctoral School of Exact and Technical Sciences, University of Zielona Góra, Al. Wojska Polskiego 69, 65-762 Zielona Góra, Poland
| | - Bartłomiej Najbar
- Department of Zoology, Institute of Biological Sciences, University of Zielona Góra, Profesora Zygmunta Szafrana 1, 65-516 Zielona Góra, Poland
| | - Łukasz Jankowiak
- Department of Ecology and Anthropology, Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| |
Collapse
|
6
|
Vélez-Terreros PY, Romero-Estévez D, Yánez-Jácome GS. Microplastics in Ecuador: A review of environmental and health-risk assessment challenges. Heliyon 2024; 10:e23232. [PMID: 38163182 PMCID: PMC10754870 DOI: 10.1016/j.heliyon.2023.e23232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Pollution from plastic debris and microplastics (MPs) is a worldwide issue. Classified as emerging contaminants, MPs have become widespread and have been found not only in terrestrial and aquatic ecosystems but also within the food chain, which affects both the environment and human health. Since the outbreak of COVID-19, the consumption of single-use plastics has drastically increased, intensifying mismanaged plastic waste in countries such as Ecuador. Therefore, the aim of this review is to 1) summarize the state of MP-related knowledge, focusing on studies conducted with environmental matrices, biota, and food, and 2) analyze the efforts by different national authorities and entities in Ecuador to control MP contamination. Results showed a limited number of studies have been done in Ecuador, which have mainly focused on the surface water of coastal areas, followed by studies on sediment and food. MPs were identified in all samples, indicating the lack of wastewater management policies, deficient management of solid wastes, and the contribution of anthropogenic activities such as artisanal fishing and aquaculture to water ecosystem pollution, which affects food webs. Moreover, studies have shown that food contamination can occur through atmospheric deposition of MPs; however, ingredients and inputs from food production, processing, and packaging, as well as food containers, contribute to MP occurrence in food. Further research is needed to develop more sensitive, precise, and reliable detection methods and assess MPs' impact on terrestrial and aquatic ecosystems, biota, and human health. In Ecuador specifically, implementing wastewater treatment plants in major cities, continuously monitoring MP coastal contamination, and establishing environmental and food safety regulations are crucial. Additionally, national authorities need to develop programs to raise public awareness of plastic use and its environmental effects, as well as MP exposure's effects on human health.
Collapse
Affiliation(s)
- Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, Pichincha, 170525, Ecuador
| | | | | |
Collapse
|