1
|
Kang KM, Lee DB, Kim HY. Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review. Food Sci Anim Resour 2024; 44:499-514. [PMID: 38765282 PMCID: PMC11097020 DOI: 10.5851/kosfa.2024.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Dong Bae Lee
- School of Languages and Cultures, The University of Queensland, Brisbane 4072, Australia
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
2
|
Lira GPO, Borges AA, Nascimento MB, Aquino LVC, Moura LFMP, Silva HVR, Ribeiro LR, Silva AR, Pereira AF. Morphological, Ultrastructural, and Immunocytochemical Characterization and Assessment of Puma ( Puma concolor Linnaeus, 1771) Cell Lines After Extended Culture and Cryopreservation. Biopreserv Biobank 2022; 20:557-566. [PMID: 35049356 DOI: 10.1089/bio.2021.0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Cell lines are valuable tools to safeguard genetic material from species threatened with extinction that is mainly due to human action. In this scenario, the puma constitutes a species whose population is being rapidly reduced in the ecosystems it inhabits. For the first time, we characterized puma skin-derived cell lines and assessed these cells after extended culture (experiment 1) and cryopreservation (experiment 2). Initially, we identified and characterized four dermal fibroblast lines using morphology, ultrastructure, and immunofluorescence assays. Moreover, we evaluated the effects of culture time (1st, 3rd, and 10th passages) and cryopreservation on their morphology, ultrastructure, viability, metabolism, proliferative activity, reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis. The cells showed a typical spindle-shaped morphology with centrally located oval nuclei. The cells were identified as fibroblasts by staining for vimentin. In vitro culture after the 1st, 3rd, and 10th passages did not alter most of the evaluated parameters. Cells in the 3rd and 10th passages showed a reduction in ROS levels (p < 0.05). The ultrastructure revealed morphological damage in the prolongments, and nuclei of cells derived from the 3rd and 10th passages. Moreover, cryopreservation resulted in a reduction in ΔΨm compared with that of noncryopreserved cells, suggesting that the optimization of cryopreservation methods for puma fibroblasts is essential. In conclusion, we found that viable fibroblasts could be obtained from puma skin, with slight changes after the 10th passage in in vitro culture and cryopreservation. This is the first report on the development of cell lines derived from pumas.
Collapse
Affiliation(s)
- Gabriela P O Lira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Alana A Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Matheus B Nascimento
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Leonardo V C Aquino
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Luiz F M P Moura
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| | - Herlon V R Silva
- Laboratory of Reproduction of Carnivores, Ceara State University (UECE), Fortaleza, Brazil
| | - Leandro R Ribeiro
- Laboratory of Reproduction of Carnivores, Ceara State University (UECE), Fortaleza, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, UFERSA, Mossoró, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoró, Brazil
| |
Collapse
|
3
|
Hussen J. Changes in Cell Vitality, Phenotype, and Function of Dromedary Camel Leukocytes After Whole Blood Exposure to Heat Stress in vitro. Front Vet Sci 2021; 8:647609. [PMID: 33898545 PMCID: PMC8062783 DOI: 10.3389/fvets.2021.647609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The dromedary camel (Camelus dromedarius) is well-adapted to the desert environment with the ability to tolerate increased internal body temperatures rising daily to 41–42°C during extreme hot. This study was undertaken to assess whether in vitro incubation of camel blood at 41°C, simulating conditions of heat stress, differently alters cell vitality, phenotype, and function of leukocytes, compared to incubation at 37°C (normothermia). Using flow cytometry, the cell vitality (necrosis and apoptosis), the expression of several cell markers and adhesion molecules, and the antimicrobial functions of camel leukocytes were analyzed in vitro. The fraction of apoptotic cells within the granulocytes, lymphocytes, and monocytes increased significantly after incubation of camel whole blood at 41°C for 4 h. The higher increase in apoptotic granulocytes and monocytes compared to lymphocytes suggests higher resistance of camel lymphocytes to heat stress. Functionally, incubation of camel blood at 41°C for 4 h enhanced the phagocytosis and ROS production activities of camel neutrophils and monocytes toward S. aureus. Monocytes from camel blood incubated at 41°C for 4 h significantly decreased their expression level of MHC class II molecules with no change in the abundance of CD163, resulting in a CD163high MHC-IIlow M2-like macrophage phenotype. In addition, heat stress treatment showed an inhibitory effect on the LPS-induced changes in camel monocytes phenotype. Furthermore, in vitro incubation of camel blood at 41°C reduced the expression of the cell adhesion molecules CD18 and CD11a on neutrophils and monocytes. Collectively, the present study identified some heat-stress-induced phenotypic and functional alterations in camel blood leukocytes, providing a paradigm for comparative immunology in the large animals. The clinical relevance of the observed changes in camel leukocytes for the adaptation of the camel immune response to heat stress conditions needs further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Comparative Study of Biological Characteristics, and Osteoblast Differentiation of Mesenchymal Stem Cell Established from Camelus dromedarius Skeletal Muscle, Dermal Skin, and Adipose Tissues. Animals (Basel) 2021; 11:ani11041017. [PMID: 33916532 PMCID: PMC8066892 DOI: 10.3390/ani11041017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) showed in vitro mesoderm-lineage differentiation and self-renewal capacity. However, no comparative study was reported on the biological characteristics of stem cells derived from skeletal muscle (SM-MSCs), dermal skin (DS-MSCs), and adipose tissues (A-MSCs) from a single donor in camels. The present study aimed to evaluate the influence of MSCs source on stem cell characteristics. We evaluated proliferation capacity and mesoderm-lineage differentiation potential from SM-MSCs, DS-MSCs, and A-MSCs. They showed spindle-like morphology after homogenization. The proliferation ability was not significantly difference in any of the groups. Furthermore, the portion of the cell cycle and expression of pluripotent markers (Oct4, Sox2, and Nanog) were similar in all cell lines at passage 3. The differentiation capacity of A-MSCs into adipocytes was significantly higher than that of SM-MSCs and DS-MSCs. However, the osteoblast differentiation capacity of A-MSCs was significantly lower than that of SM-MSCs and DS-MSCs. Additionally, after osteoblast differentiation, the alkaline phosphatase (ALP) activity and calcium content significantly decreased in A-MSCs compared to SM-MSCs and DS-MSCs. To the best of our knowledge, we primarily established MSCs from the single camel and demonstrated their comparative characteristics, including expression of pluripotent factors and proliferation, and in vitro differentiation capacity into adipocytes and osteoblasts.
Collapse
|
5
|
Borges AA, Lira GPDO, Nascimento LE, Santos MVDO, Oliveira MFD, Silva AR, Pereira AF. Isolation, characterization, and cryopreservation of collared peccary skin-derived fibroblast cell lines. PeerJ 2020; 8:e9136. [PMID: 32547858 PMCID: PMC7275682 DOI: 10.7717/peerj.9136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Biobanking of cell lines is a promising tool of support for wildlife conservation. In particular, the ability to preserve fibroblast cell lines derived from collared peccaries is of significance as these wild mammals are unique to the Americas and play a large role in maintaining the ecosystem. We identified collared peccary fibroblasts by immunofluorescence and evaluated their morphology, growth and adherence capacity. Further, we monitored the viability and metabolic activity of the fibroblasts to determine the effects of passage number and cryopreservation on establishment of cell lines. Methods Skin biopsies were collected from the peripheral ear region from five adult animals in captivity. Initially, cells were isolated from fragments and cultured in the Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum and 2% antibiotic-antimycotic solution under a controlled atmosphere (38.5 °C, 5% CO2). We evaluated the maintenance of primary cells for morphology, adherence capacity of explants, explants in subconfluence, cell growth and absence of contamination. Moreover, we identified the fibroblast cells by immunofluorescence. Additionally, to evaluate the influence of the number of passages (first, third and tenth passage) and cryopreservation on establishment of cell lines, fibroblasts were analysed for the viability, metabolic activity, population doubling time (PDT), levels of reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm). Results All explants (20/20) adhered to the dish in 2.4 days ± 0.5 with growth around the explants in 4.6 days ± 0.7, and subconfluence was observed within 7.8 days ± 1.0. Moreover, by morphology and immunocytochemistry analyses, cells were identified as fibroblasts which presented oval nuclei, a fusiform shape and positive vimentin staining. No contamination was observed after culture without antibiotics and antifungals for 30 days. While there was no difference observed for cell viability after the passages (first vs. third: P = 0.98; first vs. tenth: P = 0.76; third vs. tenth: P = 0.85), metabolic activity was found to be reduced in the tenth passage (23.2 ± 12.1%) when compared to that in the first and third passage (100.0 ± 24.4%, P = 0.006). Moreover, the cryopreservation did not influence the viability (P = 0.11), metabolic activity (P = 0.77), or PDT (P = 0.11). Nevertheless, a greater ΔΨm (P = 0.0001) was observed for the cryopreserved cells (2.12 ± 0.14) when compared to that in the non-cryopreserved cells (1.00 ± 0.05). Additionally, the cryopreserved cells showed greater levels of intracellular ROS after thawing (1.69 ± 0.38 vs. 1.00 ± 0.22, P = 0.04). Conclusions This study is the first report on isolation, characterization and cryopreservation of fibroblasts from collared peccaries. We showed that adherent cultures were efficient for obtaining fibroblasts, which can be used as donor cells for nuclei for species cloning and other applications.
Collapse
Affiliation(s)
- Alana Azevedo Borges
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | - Lucas Emanuel Nascimento
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | - Moacir Franco De Oliveira
- Laboratory of Applied Animal Morphophysiology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Alexsandra Fernandes Pereira
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
6
|
Saadeldin IM, Swelum AAA, Zakri AM, Tukur HA, Alowaimer AN. Effects of Acute Hyperthermia on the Thermotolerance of Cow and Sheep Skin-Derived Fibroblasts. Animals (Basel) 2020; 10:ani10040545. [PMID: 32218166 PMCID: PMC7222367 DOI: 10.3390/ani10040545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary We compared the thermotolerance of cow and sheep fibroblasts after exposure to acute hyperthermia (45 °C for 4 h). The primary culture, first passage, and cryopreserved cow fibroblasts resisted acute hyperthermia in terms of cell viability, proliferation, and migration to close cell scratch, in addition to increased expression of heat shock protein (HSP70 and HSP90) mRNA transcripts. Abstract This study was conducted to compare the effects of acute hyperthermia (45 °C for 4 h) on the viability, proliferation, and migratory activity through wound-healing assays of cow and sheep fibroblasts. The study examined the effects on primary cultures and first passage skin-derived fibroblasts. Relative quantification of HSP70, HSP90, P53, BAX, BCL2, and BECN1 was investigated after normalization to housekeeping genes GAPDH and beta-actin. The results revealed that cultured cow primary fibroblasts exhibited increased viability and reinitiated cell migration to close the cell monolayer scratch earlier than sheep cells. Similar patterns were observed in the first passage fibroblasts, with severe effects on sheep cells. Both cow and sheep cells exhibited decreased cell viability and failed to regain migratory activity after re-exposure of recovered heat-shocked cells. Effects of hyperthermia on sheep cells were potentiated by cell cryopreservation. The qPCR results showed that cow cells significantly increased HSP70 and HSP90 expression, which decreased the elevation of P53, and ameliorated the effects of the increased BAX/BCL2 ratio. The results provide a paradigm to compare thermotolerance among different animal species and revealed that trypsin could be an additional stress, which potentiates the effects of heat shock in in vitro experiments.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel M Zakri
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Osama A, Shikshaky H, Alfayez M, Alowaimer AN, Magdeldin S. Thermotolerance and plasticity of camel somatic cells exposed to acute and chronic heat stress. J Adv Res 2019; 22:105-118. [PMID: 31969994 PMCID: PMC6965514 DOI: 10.1016/j.jare.2019.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Arabian camel is the largest known mammal that can survive in severe hot climatic conditions. We provide the molecular explanation for the thermotolerance of camel granulosa somatic cells after exposure to 45 °C for 2 (acute heat shock) or 20 h (chronic heat shock). The common features of the cellular responses to acute heat stress were the increase of heat shock proteins and DNA repair enzymes expression. Actin polymerization and Rho signaling were critically activated as a cellular defense against heat shock. Cells exposed to chronic heat shock showed altered cell architecture with a decrease in total detected proteins, metabolic enzymes, and cytoskeletal protein expression. Treatment with transforming growth factor beta (TGFβ) pathway inhibitor SB-431542 suppressed the morphological alterations of cells exposed to chronic heat shock. Moreover, during the recovery stage at 38 °C for 24 h, proteomic changes were partially restored with an exponential increase in HSP70 expression, and the cells restored their normal cellular morphology on the 9th day of recovery. Full proteomics data are available via ProteomeXchange with identifier PXD012159. The strategies of cellular defense and tolerance to both thermal conditions reflect the flexible adaptability of camel somatic cells to conserve life under extremely hot conditions.
Collapse
Key Words
- Actin
- Anastasis
- CB, Cytochalasin B
- Camel
- GSH, reduced glutathione
- HSPs
- HSPs, heat shock proteins
- IDA, information dependent acquisition
- MDA, malondialdehyde
- Proteomics
- RI, ROCK-inhibitor
- ROCK
- ROCKs, Rho-associated protein kinases
- TGFβ
- TGFβ, transforming growth factor beta
- TIC, total ion chromatography
- Y-27632, ROCK-inhibitor Y-27632
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Aya Osama
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saudi Society for Camel Research, King Saud University, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, 57357 Children's Cancer Hospital, Cairo, Egypt.,Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Saadeldin IM, Swelum AAA, Tukur HA, Alowaimer AN. Thermotolerance of camel (Camelus dromedarius) somatic cells affected by the cell type and the dissociation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29490-29496. [PMID: 31435907 DOI: 10.1007/s11356-019-06208-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Researchers dealing with heat stress experiments use different cell kinds and use trypsin that has been reported to affect the cellular proteins of cultured cells. Therefore, we compared the effects of acute and chronic exposures to high temperature (45 °C) on camel skin fibroblast and granulosa cells. Primary culture of fibroblasts and granulosa cells tolerated the acute heat shock for 2 h; however, granulosa cells cultured for long duration (20 h) showed thermotolerance when compared with the fibroblasts. Moreover, the effect of cell dispersion method (trypsin and mechanical dissociation) on the thermotolerance of sub-cultured cells was examined. Trypsin altered the morphology of fibroblasts and granulosa cells exposed to 45 °C for 4 h. Moreover, trypsin significantly reduced the fibroblast and granulosa cell migration in the wound healing assay. The current results demonstrate that cell passaging and cell type can affect the thermotolerance of the cells; it also revealed that trypsin could alter the cellular response to the heat shock. We raise the demand for another alternative method for cell dispersion in experiments dealing with cellular responses to the heat shock.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|