1
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
2
|
Zhou T, Afzal R, Haroon M, Ma Y, Zhang H, Li L. Dominant complementation of biological pathways in maize hybrid lines is associated with heterosis. PLANTA 2022; 256:111. [PMID: 36352050 DOI: 10.1007/s00425-022-04028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Allele-specific expressed genes (ASEGs) are widespread in maize hybrid lines and play important roles of complementation of biological pathways in heterosis. Heterosis (hybrid vigor) is an important phenomenon with both theoretical and practical value. However, our understanding of the genetic and molecular mechanisms behind heterosis is still limited. Here, we analyzed a comprehensive dataset of maize (Zea mays L.), including RNA-seq data from three hybrid-parent triplets (HPTs) and acetylated protein data from one HPT. The gene expression patterns exhibited extensive variation between the hybrids and their parents, and a substantial number of allele-specific expressed genes (ASEGs) were identified in the hybrids. Notably, ASEGs from different HPTs were significantly enriched in various conserved pathways. The parental alleles of ASEGs with fewer deleterious single-nucleotide polymorphisms were more likely to be expressed in hybrid lines than other parental alleles. ASEGs were mainly enriched in the functional gene ontology terms protein biosynthesis, photosynthesis, and metabolism. In addition, the ASEGs across the three HPTs were involved in key photosynthetic pathways and might enhance the photosynthetic efficiency of the hybrids. These findings suggest that ASEGs involved in complementary biological pathways in maize hybrids contribute to heterosis, shedding new light on the molecular mechanism of heterosis.
Collapse
Affiliation(s)
- Tao Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuting Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Genetic Architecture and Signatures of Selection in the Caqueteño Creole (Colombian Native Cattle). DIVERSITY 2022. [DOI: 10.3390/d14100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Evolutionary mechanisms have shaped the genomic architecture of Colombian Creole cattle breeds. The mating and selection processes have impacted several traits, promoting differences within and between populations. Studies of population structure and selection signatures in Colombian Creole breeds are scarce, and need more attention to better understand genetic differentiation, gene flow, and genetic distance. This study aimed to analyze the population structure and identify selection imprints in the Criollo Caqueteño (CAQ) population. It used 127 CAQ animals genotyped with Chip HD 777,000 SNPs. The population structure analyses used discriminant principal component analysis (DAPC), integrated haplotype scoring (iHS), and index-fixing (Fst) methodologies to detect selection signals. We can highlight SNP regions on the genes TMPRSS15, PGAM2, and EGFR, identified by the Fst method. Additionally, the iHS regions for cluster 1 identified candidate genes on BTA 3 (CMPK1 and FOXD2), BTA 11 (RCAN1), and BTA 22 (ARPP21). In group 2, we can highlight the genes on BTA 4 (SLC13A4, BRAF), BTA 9 (ULBP), BTA 14 (CSMD3) and BTA 19 (KRTAP9-2). These candidate genes have been associated with fertility traits, precocity, growth, and environmental and disease resistance, indicating a genetic potential in CAQ animals. All this promotes a better understanding of the diversity and genetic structure in the CAQ population. Based on that, our study can significantly assist the sustainable development and conservation of the breed in the Colombian Amazon.
Collapse
|
4
|
Huang Y, Ouyang F, Yang F, Zhang N, Zhao W, Xu H, Yang X. The expression of Hexokinase 2 and its hub genes are correlated with the prognosis in glioma. BMC Cancer 2022; 22:900. [PMID: 35982398 PMCID: PMC9386956 DOI: 10.1186/s12885-022-10001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hexokinase 2 (HK2) is an enzyme that catalyses the conversion of glucose to glucose-6-phosphate, which has been found to be associated with malignant tumour growth. However, the potential immunological and clinical significance of HK2, especially in terms of prognostic prediction for patients with glioma, has not been fully elucidated. METHODS To investigate the expression, immunological and clinical significance of HK2 in patients with glioma, several databases, including ONCOMINE, TIMER2.0, GEPIA, CGGA, UCSC, LinkedOmics, Metascape, STRING, GSCA, and TISIDB, as well as biochemical, cellular, and pathological analyses, were used in this study. In addition, we performed univariate, multivariate Cox regression and nomogram analyses of the hub genes positively and negatively correlated with HK2 to explore the potential regulatory mechanism in the initiation and development of glioma. RESULTS Our results demonstrated that HK2 was highly expressed in most malignant cancers. HK2 expression was significantly higher in lower grade glioma (LGG) and glioblastoma (GBM) than in adjacent normal tissue. In addition, HK2 expression was significantly correlated with clinical parameters, histological manifestations, and prognosis in glioma patients. Specifically, the data from The Cancer Genome Atlas downloaded from UCSC Xena database analysis showed that high expression of HK2 was strongly associated with poor prognosis in glioma patients. The LinkedOmics database indicated that HK2-related genes were mainly enriched in immune-related cells. In LGG and GBM tissues, HK2 expression is usually correlated with recognized immune checkpoints and the abundance of multiple immune infiltrates. Similarly, the Metascape database revealed that HK2-related genes were mainly enriched and annotated in immune-related pathways and immune cells. Further investigations also confirmed that the inhibition of HK2 expression remarkably suppressed metastasis and vasculogenic mimicry (VM) formation in glioma cells through regulating the gene expression of inflammatory and immune modulators. CONCLUSION HK2 expression was closely associated with the malignant properties of glioma through activating multiple immune-related signalling pathways to regulate immune responses and the infiltration of immune cells. Thus, HK2 and its hub genes may be a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Yishan Huang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fan Ouyang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Fengxia Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weijiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Anthropotomy/Clinically Oriented Anatomy, Shantou University Medical College, Shantou, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Lim KS, Kim HC, Choi BH, Son JW, Lee KT, Choi TJ, Cho YM, Chai HH, Park JE, Park W, Lim C, Kim JM, Lim D. Identification of Monoallelically Expressed Genes Associated with Economic Traits in Hanwoo (Korean Native Cattle). Animals (Basel) 2021; 12:ani12010084. [PMID: 35011190 PMCID: PMC8749587 DOI: 10.3390/ani12010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Hanwoo, an indigenous Korean cattle breed, has been genetically improved by selecting superior sires called Korean-proven bulls. However, cows still contribute half of the genetic stock of their offspring, and allelic-specific expressed genes have potential, as selective targets of cows, to enhance genetic gain. The aim of this study is to identify genes that have MAEs based on both the genome and transcriptome and to estimate their effects on breeding values (BVs) for economically important traits in Hanwoo. We generated resequencing data for the parents and RNA-sequencing data for the muscle, fat, and brain tissues of the offspring. A total of 3801 heterozygous single nucleotide polymorphisms (SNPs) in offspring were identified and they were located in 1569 genes. Only 14 genes showed MAE (seven expressing maternal alleles and seven expressing paternal alleles). Tissue-specific MAE was observed, and LANCL1 showed maternal allele expression across all tissues. MAE genes were enriched for the biological process of cell death and angiogenesis, which included ACKR3 and PDCL3 genes, whose SNPs were significantly associated with BVs of lean meat production-related traits, such as weight at 12 months of age, carcass weight, and loin eye area. In the current study, monoallelically expressed genes were identified in various adult tissues and these genes were associated with genetic capacity in Hanwoo.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Hyung-Chul Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Ju-Whan Son
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Tae-Jeong Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Yong-Min Cho
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea
| |
Collapse
|