1
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies (Basel) 2018; 7:E44. [PMID: 31544894 PMCID: PMC6698954 DOI: 10.3390/antib7040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, we describe the selection and characterization of single-domain antibodies (sdAb) towards the E2/E3E2 envelope protein of the Western equine encephalitis virus (WEEV). Our purpose was to identify novel recognition elements which could be used for the detection, diagnosis, and perhaps treatment of western equine encephalitis (WEE). To achieve this goal, we prepared an immune phage display library derived from the peripheral blood lymphocytes of a llama that had been immunized with an equine vaccine that includes killed WEEV (West Nile Innovator + VEWT). This library was panned against recombinant envelope (E2/E3E2) protein from WEEV, and seven representative sdAb from the five identified sequence families were characterized. The specificity, affinity, and melting point of each sdAb was determined, and their ability to detect the recombinant protein in a MagPlex sandwich immunoassay was confirmed. Thus, these new binders represent novel recognition elements for the E2/E3E2 proteins of WEEV that are available to the research community for further investigation into their applicability for use in the diagnosis or treatment of WEE.
Collapse
Affiliation(s)
- Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
3
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
4
|
Anderson GP, Shriver-Lake LC, Walper SA, Ashford L, Zabetakis D, Liu JL, Breger JC, Brozozog Lee PA, Goldman ER. Genetic Fusion of an Anti-BclA Single-Domain Antibody with Beta Galactosidase. Antibodies (Basel) 2018; 7:antib7040036. [PMID: 31544886 PMCID: PMC6698959 DOI: 10.3390/antib7040036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
The Bacillus collagen-like protein of anthracis (BclA), found in Bacillus anthracis spores, is an attractive target for immunoassays. Previously, using phage display we had selected llama-derived single-domain antibodies that bound to B. anthracis spore proteins including BclA. Single-domain antibodies (sdAbs), the recombinantly expressed heavy domains from the unique heavy-chain-only antibodies found in camelids, provide stable and well-expressed binding elements with excellent affinity. In addition, sdAbs offer the important advantage that they can be tailored for specific applications through protein engineering. A fusion of a BclA targeting sdAb with the enzyme Beta galactosidase (β-gal) would enable highly sensitive immunoassays with no need for a secondary reagent. First, we evaluated five anti-BclA sdAbs, including four that had been previously identified but not characterized. Each was tested to determine its binding affinity, melting temperature, producibility, and ability to function as both capture and reporter in sandwich assays for BclA. The sdAb with the best combination of properties was constructed as a fusion with β-gal and shown to enable sensitive detection. This fusion has the potential to be incorporated into highly sensitive assays for the detection of anthrax spores.
Collapse
Affiliation(s)
- George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Scott A Walper
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lauryn Ashford
- The Washington Center for Internships and Academic Seminars, 1333 16th Street N.W., Washington, DC 20036, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Joyce C Breger
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | | | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
5
|
Pairing Alpaca and Llama-Derived Single Domain Antibodies to Enhance Immunoassays for Ricin. Antibodies (Basel) 2017; 6:antib6010003. [PMID: 31548519 PMCID: PMC6698814 DOI: 10.3390/antib6010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022] Open
Abstract
Previously, our group isolated and evaluated anti-ricin single domain antibodies (sdAbs) derived from llamas, engineered them to further increase their thermal stability, and utilized them for the development of sensitive immunoassays. In work focused on the development of therapeutics, Vance et al. 2013 described anti-ricin sdAbs derived from alpacas. Herein, we evaluated the utility of selected alpaca-derived anti-ricin sdAbs for detection applications, and engineered an alpaca-derived sdAb to increase its melting temperature, providing a highly thermal stable reagent for use in ricin detection. Four of the alpaca-derived anti-ricin A-chain sdAbs were produced and characterized. All four bound to epitopes that overlapped with our previously described llama sdAbs. One alpaca sdAb, F6, was found to possess both a high melting temperature (73 °C) and to work optimally with a thermally stable llama anti-ricin sdAb in sandwich assays for ricin detection. We employed a combination of consensus sequence mutagenesis and the addition of a non-canonical disulfide bond to further enhance the thermal stability of F6 to 85 °C. It is advantageous to have a choice of recognition reagents when developing assays. This work resulted in defining an additional pair of highly thermal stable sdAbs for the sensitive detection of ricin.
Collapse
|
6
|
Kiseleva EP, Mikhailopulo KI, Ladutska AI, Novik GI. Methodological approach to the study of dynamics of specific concentration of cell wall antigens per cell of Bacillus species and examples of its application. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background: Nonpathogenic Bacillus strains are used in biotechnology, and pathogenic Bacillus strains are cause of food borne disease. It explains the relevance of the methods of detection and quantification of whole cell and cell components of these bacteria. Aims: Development of methodological approach for investigation of dynamics of specific concentration of cell wall antigens per cell of bacilli without solubilization of cell wall during sample preparation; using of the approach with 6 strains of bacilli as an example. Method: ELISA. Results: Methodological approach for investigation of dynamics of specific concentration of bacilli cell wall antigens has been developed. The distinctive features of the approach are rabbit polyclonal antibodies to genera-specific antigens of bacilli as key reagent and lack of need for solubilization of cell wall during sample preparation. It was shown using 6 strains of Bacilli as an example that specific concentration of cell wall antigens per cell vary according to bacillus strain, stage of culture growth and media composition. The data will find an application in biotechnology of clinical diagnostics and test-systems for food control including detection of whole bacillus cells.
Collapse
Affiliation(s)
- Elena Pavlovna Kiseleva
- Department of immunological and molecular biological diagnostics, The Institute of Bioorganic chemistry, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Konstantin Igorevich Mikhailopulo
- Department of immunological and molecular biological diagnostics, The Institute of Bioorganic chemistry, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Alena Ivanovna Ladutska
- Laboratory “Collection of microorganisms”, The Institute of Microbiology, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Galina Ivanovna Novik
- Laboratory “Collection of microorganisms”, The Institute of Microbiology, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| |
Collapse
|
7
|
Raphael MP, Christodoulides JA, Byers JM, Anderson GP, Liu JL, Turner KB, Goldman ER, Delehanty JB. Optimizing Nanoplasmonic Biosensor Sensitivity with Orientated Single Domain Antibodies. PLASMONICS (NORWELL, MASS.) 2015; 10:1649-1655. [PMID: 26594135 PMCID: PMC4644190 DOI: 10.1007/s11468-015-9969-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/08/2015] [Indexed: 06/05/2023]
Abstract
Localized surface plasmon resonance (LSPR) spectroscopy and imaging are emerging biosensor technologies which tout label-free biomolecule detection at the nanoscale and ease of integration with standard microscopy setups. The applicability of these techniques can be limited by the restrictions that surface-conjugated ligands must be both sufficiently small and orientated to meet analyte sensitivity requirements. We demonstrate that orientated single domain antibodies (sdAb) can optimize nanoplasmonic sensitivity by comparing three anti-ricin sdAb constructs to biotin-neutravidin, a model system for small and highly orientated ligand studies. LSPR imaging of electrostatically orientated sdAb exhibited a ricin sensitivity equivalent to that of the biotinylated LSPR biosensors for neutravidin. These results, combined with the facts that sdAb are highly stable and readily produced in bacteria and yeast, build a compelling case for the increased utilization of sdAbs in nanoplasmonic applications.
Collapse
Affiliation(s)
- Marc P. Raphael
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Joseph A. Christodoulides
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jeff M. Byers
- />Bioelectronics and Sensing, Code 6363, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - George P. Anderson
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Jinny L. Liu
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Kendrick B. Turner
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - Ellen R. Goldman
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| | - James B. Delehanty
- />Center for Bio/Molecular Science and Engineering, Code 6900, Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 USA
| |
Collapse
|
8
|
Turner KB, Liu JL, Zabetakis D, Lee AB, Anderson GP, Goldman ER. Improving the biophysical properties of anti-ricin single-domain antibodies. ACTA ACUST UNITED AC 2015. [PMID: 28626694 PMCID: PMC5466252 DOI: 10.1016/j.btre.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-domain antibodies (sdAbs) derived from heavy-chain only antibodies produced in camelids are attractive immunoreagents due to their small size, high affinity, and ability to refold and retain binding activity after denaturation. It has been observed that some sdAbs, however, exhibit undesirable properties including reduced solubility when subjected to heating or upon long-term storage at production-relevant concentrations, which can limit their usefulness. Using a multi-step, rational design approach that included consensus-sequence driven sequence repairs, the alteration of net protein charge, and the introduction of non-native disulfide bonds, augmented solubility and increased melting temperatures were achieved. The improved sdAbs tolerated storage in solution at high concentration (10 mg/mL) and were able to withstand multiple cycles of heating to high temperature (70 °C). This work demonstrates a pathway for improving the biophysical characteristics of sdAbs which is essential for expanding their utility for both diagnostic as well as therapeutic applications.
Collapse
Affiliation(s)
- Kendrick B. Turner
- American Society for Engineering Education, Postdoctoral Fellow at the Naval Research Laboratory, Washington, DC 20375, USA
| | - Jinny L. Liu
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | - George P. Anderson
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Ellen R. Goldman
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
- Corresponding author. Tel.: +1 202 404 6052
| |
Collapse
|
9
|
Walper SA, Liu JL, Zabetakis D, Anderson GP, Goldman ER. Development and evaluation of single domain antibodies for vaccinia and the L1 antigen. PLoS One 2014; 9:e106263. [PMID: 25211488 PMCID: PMC4161341 DOI: 10.1371/journal.pone.0106263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022] Open
Abstract
There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10−9 M to 7.0×10−10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×105 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies.
Collapse
Affiliation(s)
- Scott A. Walper
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Jinny L. Liu
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Daniel Zabetakis
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - George P. Anderson
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
| | - Ellen R. Goldman
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liu JL, Zabetakis D, Brown JC, Anderson GP, Goldman ER. Thermal stability and refolding capability of shark derived single domain antibodies. Mol Immunol 2014; 59:194-9. [DOI: 10.1016/j.molimm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
|
11
|
Thermostable single domain antibody–maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Anal Biochem 2014; 447:64-73. [DOI: 10.1016/j.ab.2013.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/17/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
12
|
Goldman ER, Brozozog-Lee PA, Zabetakis D, Turner KB, Walper SA, Liu JL, Anderson GP. Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expr Purif 2014; 95:226-32. [PMID: 24440507 DOI: 10.1016/j.pep.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
Single-domain antibodies (sdAbs), the recombinantly expressed binding domains derived from the heavy-chain-only antibodies found in camelids and sharks, are valued for their ability to refold after heat denaturation. However, some sdAbs are prone to aggregation on extended heating at high concentration. Additionally, sdAbs prepared cytoplasmically often lack the conserved disulfide bond found in variable heavy domains, which both decreases their melting point and can decrease their ability to refold. Genetic fusions of sdAbs with the acid tail of α-synuclein (ATS) resulted in constructs that had enhanced ability to resist aggregation. In addition, almost complete refolding was observed even in the absence of the disulfide bond. These sdAb-ATS fusions expand the utility of sdAbs. They provide sdAbs that are resistant to aggregation, and enable the production of re-foldable sdAbs in the reducing environment of the cytoplasm.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | | | - Dan Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Kendrick B Turner
- Science and Engineering Apprenticeship Program, American Society for Engineering Education, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Jinny L Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
13
|
Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In Pursuit of Protein Targets: Proteomic Characterization of Bacterial Spore Outer Layers. J Proteome Res 2013; 12:4507-21. [DOI: 10.1021/pr4005629] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Patima Permpoonpattana
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | - Simon M. Cutting
- School
of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | |
Collapse
|