1
|
Sebastião MJ, Hoffman M, Escandell J, Tousi F, Zhang J, Figueroa B, DeMaria C, Gomes-Alves P. Identification of Mispairing Omic Signatures in Chinese Hamster Ovary (CHO) Cells Producing a Tri-Specific Antibody. Biomedicines 2023; 11:2890. [PMID: 38001891 PMCID: PMC10669571 DOI: 10.3390/biomedicines11112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Monoclonal antibody-based therapy has shown efficacy against cancer, autoimmune, infectious, and inflammatory diseases. Multispecific antibodies (MsAbs), including trispecifics (tsAbs), offer enhanced therapeutic potential by targeting different epitopes. However, when co-expressed from three or more different polypeptide chains, MsAb production can lead to incorrect chain assembly and co-production of mispaired species with impaired biological activity. Moreover, mispairing carries significant challenges for downstream purification, decreasing yields and increasing the cost of bioprocess development. In this study, quantitative transcriptomics and proteomics analyses were employed to investigate which signaling pathways correlated with low and high mispairing clone signatures. Gene and protein expression profiles of Chinese hamster ovary (CHO) clones producing an tsAb were analyzed in the exponential growth and stationary (tsAb production) phase of fed-batch culture. Functional analysis revealed activated endoplasmic reticulum stress in high mispairing clones in both culture phases, while low mispairing clones exhibited expression profiles indicative of activated protein translation, as well as higher endocytosis and target protein degradation, suggesting the clearance of unfolded proteins through ubiquitin-mediated mechanisms. In addition, through transcriptomic profiling, we identified a group of genes that have the potential to be used as a biomarker panel tool for identifying high mispairing levels in the early stages of bioprocess development.
Collapse
Affiliation(s)
- Maria João Sebastião
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Michael Hoffman
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - José Escandell
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fatemeh Tousi
- Sanofi Bioanalytics Development, Global CMC Development, Framingham, MA 01701, USA
| | - Jin Zhang
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Bruno Figueroa
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Christine DeMaria
- Sanofi Cell Line and Cell Bank Development, Mammalian Platform, Global CMC Development, Framingham, MA 01701, USA (B.F.)
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; (M.J.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
2
|
Ong HK, Nguyen NTB, Bi J, Yang Y. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antib Ther 2022; 5:288-300. [PMID: 36518226 PMCID: PMC9743168 DOI: 10.1093/abt/tbac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Two-armed FabscFv-Fc is a favoured bispecific antibody (BsAb) format due to its advantages of the conventional IgG structure. Production of FabscFv-Fc requires expression of three polypeptide chains, one light chain (LC), one heavy chain (HC) and a scFv fused to the Fc (scFvFc) at optimal ratios. METHODS We designed a set of internal ribosome entry site (IRES)-mediated multi-cistronic vectors tailoring to various expression ratios of the three polypeptides to study how the chain ratios affect the FabscFv-Fc production. RESULTS Expression of HC and scFvFc chains at 1:1 ratio and excess LC gave the highest yield of correctly assembled product. Compared to the use of IRES and multiple promoters, using 2A peptides for co-expression of the three polypeptides gave the highest titre and correctly assembled product. CONCLUSION The results obtained in this work provide insights to the impacts of hetero-chain ratios on the BsAb production.
Collapse
Affiliation(s)
- Han Kee Ong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Ngan T B Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| |
Collapse
|
3
|
Underwood DJ, Bettencourt J, Jawad Z. The manufacturing considerations of bispecific antibodies. Expert Opin Biol Ther 2022; 22:1043-1065. [PMID: 35771976 DOI: 10.1080/14712598.2022.2095900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibody therapies have made huge strides in providing safe and efficacious drugs for autoimmune, cancer and infectious disease. These bispecific antibodies can be assembled from the basic building blocks of IgGs, resulting in dozens of formats. AREAS COVERED It is important to consider the manufacturability of these formats early in the antibody discovery phases. Broadly categorizing bispecific antibodies into IgG-like, fragment-based, appended and hybrid formats can help in looking at early manufacturability considerations. EXPERT OPINION Ideally, bispecific antibody manufacturing should contain a minimal number of steps, with processes that give high yields of protein with no contaminants. Many of these have been determined for the fragment-based bispecific blinatumomab and the IgG-like bispecifics from hybridomas. However, for new formats, these need to be considered early in the research and development pipeline. The hybrid formats offer an unusual alternative in generating high pure yields of bispecific molecules if the engineering challenges can be deciphered.
Collapse
Affiliation(s)
| | | | - Zahra Jawad
- Agenus inc., 3 Forbes Road, Lexington, MA, 02421-7305, United States.,Creasallis ltd, Babraham Research Campus, Babraham, Cambridgeshire, CB22 3AT, United Kingdom
| |
Collapse
|
4
|
Guo C, Chen F, Xiao Q, Catterall HB, Robinson JH, Wang Z, Mock M, Hubert R. Expression liabilities in a four-chain bispecific molecule. Biotechnol Bioeng 2021; 118:3744-3759. [PMID: 34110008 DOI: 10.1002/bit.27850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Multispecific antibodies, often composed of three to five polypeptide chains, have become increasingly relevant in the development of biotherapeutics. These molecules have mechanisms of action that include redirecting T cells to tumors and blocking multiple pathogenic mediators simultaneously. One of the major challenges for asymmetric multispecific antibodies is generating a high proportion of the correctly paired antibody during production. To understand the causes and effects of chain mispairing impurities in a difficult to express multispecific hetero-IgG, we investigated consequences of individual and pairwise chain expression in mammalian transient expression hosts. We found that one of the two light chains (LC) was not secretion competent when transfected individually or cotransfected with the noncognate heavy chain (HC). Overexpression of this secretion impaired LC reduced cell growth while inducing endoplasmic reticulum stress and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. The majority of this LC was observed as monomer with incomplete intrachain disulfide bonds when expressed individually. Russell bodies (RB) were induced when this LC was co-expressed with the cognate HC. Moreover, one HC paired promiscuously with noncognate LC. These results identify the causes for the low product quality observed from stable cell lines expressing this heteroIgG and suggest mitigation strategies to improve overall process productivity of the correctly paired multispecific antibody. The approach described here provides a general strategy for identifying the molecular and cellular liabilities associated with difficult to express multispecific antibodies.
Collapse
Affiliation(s)
- Cai Guo
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Fuyi Chen
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Qiang Xiao
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hannah B Catterall
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - John H Robinson
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Zhulun Wang
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., San Francisco, California, USA
| | - Marissa Mock
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - René Hubert
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
5
|
Ding M, Shen L, Xiao L, Liu X, Hu J. A cell line development strategy to improve a bispecific antibody expression purity in CHO cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
The Confluence of Innovation in Therapeutics and Regulation: Recent CMC Considerations. J Pharm Sci 2020; 109:3524-3534. [PMID: 32971125 PMCID: PMC7505112 DOI: 10.1016/j.xphs.2020.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
The field of human therapeutics has expanded tremendously from small molecules to complex biological modalities, and this trend has accelerated in the last two decades with a greater diversity in the types and applications of novel modalities, accompanied by increasing sophistication in drug delivery technology. These innovations have led to a corresponding increase in the number of therapies seeking regulatory approval, and as the industry continues to evolve regulations will need to adapt to the ever-changing landscape. The growth in this field thus represents a challenge for regulatory authorities as well as for sponsors. This review provides a brief description of novel biologics, including innovative antibody therapeutics, genetic modification technologies, new developments in vaccines, and multifunctional modalities. It also describes a few pertinent drug delivery mechanisms such as nanoparticles, liposomes, coformulation, recombinant human hyaluronidase for subcutaneous delivery, pulmonary delivery, and 3D printing. In addition, it provides an overview of the current CMC regulatory challenges and discusses potential methods of accelerating regulatory mechanisms for more efficient approvals. Finally, we look at the future of biotherapeutics and emphasize the need to bring these modalities to the forefront of patient care from a global perspective as effectively as possible.
Collapse
|