1
|
De Anda-Mora KL, Tavares-Carreón F, Alvarez C, Barahona S, Becerril-García MA, Treviño-Rangel RJ, García-Contreras R, Andrade A. Increased Proteolytic Activity of Serratia marcescens Clinical Isolate HU1848 Is Associated with Higher eepR Expression. Pol J Microbiol 2024; 73:11-20. [PMID: 38437469 PMCID: PMC10911700 DOI: 10.33073/pjm-2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/14/2023] [Indexed: 03/06/2024] Open
Abstract
Serratia marcescens is a global opportunistic pathogen. In vitro cytotoxicity of this bacterium is mainly related to metalloprotease serralysin (PrtS) activity. Proteolytic capability varies among the different isolates. Here, we characterized protease production and transcriptional regulators at 37°C of two S. marcescens isolates from bronchial expectorations, HU1848 and SmUNAM836. As a reference strain the insect pathogen S. marcescens Db10 was included. Zymography of supernatant cultures revealed a single (SmUNAM836) or double proteolytic zones (HU1848 and Db10). Mass spectrometry confirmed the identity of PrtS and the serralysin-like protease SlpB from supernatant samples. Elevated proteolytic activity and prtS expression were evidenced in the HU1848 strain through azocasein degradation and qRT-PCR, respectively. Evaluation of transcriptional regulators revealed higher eepR expression in HU1848, whereas cpxR and hexS transcriptional levels were similar between studied strains. Higher eepR expression in HU1848 was further confirmed through an in vivo transcriptional assay. Moreover, two putative CpxR binding motifs were identified within the eepR regulatory region. EMSA validated the interaction of CpxR with both motifs. The evaluation of eepR transcription in a cpxR deletion strain indicated that CpxR negatively regulates eepR. Sequence conservation suggests that regulation of eepR by CpxR is common along S. marcescens species. Overall, our data incorporates CpxR to the complex regulatory mechanisms governing eepR expression and associates the increased proteolytic activity of the HU1848 strain with higher eepR transcription. Based on the global impact of EepR in secondary metabolites production, our work contributes to understanding virulence factors variances across S. marcescens isolates.
Collapse
Affiliation(s)
- Karla L. De Anda-Mora
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Faviola Tavares-Carreón
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Carlos Alvarez
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Samantha Barahona
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Miguel A. Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rogelio J. Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
2
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks JM, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RMQ. Predatory bacteria can reduce Pseudomonas aeruginosa induced corneal perforation and proliferation in a rabbit keratitis model. Ocul Surf 2023; 28:254-261. [PMID: 37146902 PMCID: PMC11265785 DOI: 10.1016/j.jtos.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. METHODS Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic ΔlasR mutant and co-injected with PBS or B. bacteriovorus. After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. RESULTS We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n = 24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n = 25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The ΔlasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus. CONCLUSION These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicholas A Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryn L Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan M Franks
- Center for Biological Imaging, University of Pittsburgh School of Engineering, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Romanowski EG, Stella NA, Brazile BL, Lathrop KL, Franks J, Sigal IA, Kim T, Elsayed M, Kadouri DE, Shanks RM. Predatory Bacteria can Reduce Pseudomonas aeruginosa Induced Corneal Perforation and Proliferation in a Rabbit Keratitis Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532777. [PMID: 36993476 PMCID: PMC10055036 DOI: 10.1101/2023.03.15.532777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Purpose Pseudomonas aeruginosa keratitis is a severe ocular infection that can lead to perforation of the cornea. In this study we evaluated the role of bacterial quorum sensing in generating corneal perforation and bacterial proliferation and tested whether co-injection of the predatory bacteria Bdellovibrio bacteriovorus could alter the clinical outcome. P. aeruginosa with lasR mutations were observed among keratitis isolates from a study collecting samples from India, so an isogenic lasR mutant strain of P. aeruginosa was included. Methods Rabbit corneas were intracorneally infected with P. aeruginosa strain PA14 or an isogenic Δ lasR mutant and co-injected with PBS or B. bacteriovorus . After 24 h, eyes were evaluated for clinical signs of infection. Samples were analyzed by scanning electron microscopy, optical coherence tomography, sectioned for histology, and corneas were homogenized for CFU enumeration and for inflammatory cytokines. Results We observed that 54% of corneas infected by wild-type PA14 presented with a corneal perforation (n=24), whereas only 4% of PA14 infected corneas that were co-infected with B. bacteriovorus perforate (n=25). Wild-type P. aeruginosa proliferation was reduced 7-fold in the predatory bacteria treated eyes. The Δ lasR mutant was less able to proliferate compared to the wild-type, but was largely unaffected by B. bacteriovorus . Conclusion These studies indicate a role for bacterial quorum sensing in the ability of P. aeruginosa to proliferate and cause perforation of the rabbit cornea. Additionally, this study suggests that predatory bacteria can reduce the virulence of P. aeruginosa in an ocular prophylaxis model.
Collapse
Affiliation(s)
- Eric G. Romanowski
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nicholas A. Stella
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Bryn L. Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Bioengineering, Swanson School of Medicine, University of Pittsburgh, Pittsburgh PA
| | - Tami Kim
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ
| | - Robert M.Q. Shanks
- The Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Dutta D, Stapleton F, Willcox M. Ocular Surface Infection and Antimicrobials. Antibiotics (Basel) 2022; 11:1496. [PMID: 36358150 PMCID: PMC9686619 DOI: 10.3390/antibiotics11111496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Infection of the ocular surface can have devastating consequences if not appropriately treated with antimicrobials at an early stage [...].
Collapse
Affiliation(s)
- Debarun Dutta
- Optometry School Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
5
|
Romanowski EG, Yadav S, Stella NA, Yates KA, Romanowski JE, Dhaliwal DK, Shanks RMQ. Bacterial Keratitis: Similar Bacterial and Clinical Outcomes in Female versus Male New Zealand White Rabbits Infected with Serratia marcescens. Curr Eye Res 2021; 47:505-510. [PMID: 34854780 DOI: 10.1080/02713683.2021.2013897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Females and males respond differently to a number of systemic viral infections. Differences between females and males with respect to the severity of keratitis caused by Gram-negative bacteria such as Serratia marcescens are less well established. METHODS In this study, we injected female and male New Zealand White rabbit corneas with a keratitis isolate of S. marcescens and evaluated the eyes after 48 hours for a number of clinical and microbiological parameters. RESULTS No statistical differences in bacterial burden and corneal scores were recorded between female and male rabbits although there was a non-significant trend toward a higher frequency of female rabbits demonstrating hypopyons. CONCLUSIONS This data suggests that for experimental bacterial keratitis studies involving Gram-negative rods, a single sex or mixed group of rabbit is sufficient for evaluating pathology and bacterial burdens. This will reduce the number of animals used for subsequent studies.
Collapse
Affiliation(s)
- Eric G Romanowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanya Yadav
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kathleen A Yates
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John E Romanowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deepinder K Dhaliwal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|