1
|
Dhariwal A, Rajar P, Salvadori G, Åmdal HA, Berild D, Saugstad OD, Fugelseth D, Greisen G, Dahle U, Haaland K, Petersen FC. Prolonged hospitalization signature and early antibiotic effects on the nasopharyngeal resistome in preterm infants. Nat Commun 2024; 15:6024. [PMID: 39019886 PMCID: PMC11255206 DOI: 10.1038/s41467-024-50433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Respiratory pathogens, commonly colonizing nasopharynx, are among the leading causes of death due to antimicrobial resistance. Yet, antibiotic resistance determinants within nasopharyngeal microbial communities remain poorly understood. In this prospective cohort study, we investigate the nasopharynx resistome development in preterm infants, assess early antibiotic impact on its trajectory, and explore its association with clinical covariates using shotgun metagenomics. Our findings reveal widespread nasopharyngeal carriage of antibiotic resistance genes (ARGs) with resistomes undergoing transient changes, including increased ARG diversity, abundance, and composition alterations due to early antibiotic exposure. ARGs associated with the critical nosocomial pathogen Serratia marcescens persist up to 8-10 months of age, representing a long-lasting hospitalization signature. The nasopharyngeal resistome strongly correlates with microbiome composition, with inter-individual differences and postnatal age explaining most of the variation. Our report on the collateral effects of antibiotics and prolonged hospitalization underscores the urgency of further studies focused on this relatively unexplored reservoir of pathogens and ARGs.
Collapse
Affiliation(s)
- Achal Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Polona Rajar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Gabriela Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Heidi Aarø Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Dag Berild
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Drude Fugelseth
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulf Dahle
- Centre for Antimicrobial Resistance, Norwegian Institute of Public Health, Oslo, Norway
| | - Kirsti Haaland
- Department of Neonatal Intensive Care, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Afsharian M, Asadi S, Danesh C, Sedighi R, Karimi K, Miladi N, Miladi R, Azizi M, Madadi-Goli N, Ahmadi K, Zamanian MH. The Abundance of Plasmid-Mediated Quinolone Resistance Genes in Enterobacter cloacae Strains Isolated from Clinical Specimens in Kermanshah, Iran. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:8849097. [PMID: 38623587 PMCID: PMC11018368 DOI: 10.1155/2024/8849097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Background Enterobacter cloacae (E. cloacae) is one of the most common Enterobacteriaceae causing nosocomial infections. Plasmid-mediated quinolone resistance (PMQR) determinants have been considered recently. This study evaluated the abundance of PMQR genes in strains of E. cloacae obtained from clinical samples in Kermanshah, Iran. Methods In this descriptive cross-sectional study, after collecting 113 isolates of E. cloacae, their identity was confirmed using specific biochemical tests. After determining their drug resistance patterns using disc diffusion, the phenotypic frequency of extended-spectrum beta-lactamase (ESBL)-producing isolates was measured by the double-disk synergy test (DDST) method. The isolates were examined for the presence of qnrA, qnrB, qnrS, and aac(6')-Ib-cr genes by the polymerase chain reaction (PCR) assay. Results The antibiotic resistance rate of E. cloacae isolates varied from 9.7% to 60.2%; among them, 78% were multidrug-resistant (MDR). The highest quinolone resistance was observed in ESBL-producing strains of E. cloacae. The frequency of positive isolates for PMQR and ESBL was 79.6% and 57.5%, respectively. The genes aac(6')-ib-cr (70.8%) and qnrB (38.1%) had the highest frequency among other genes. The number of isolates simultaneously carrying 2 and 3 genes was 64 and 5 isolates, respectively. Conclusion The obtained results indicate a high degree of quinolone resistance among ESBL-producing E. cloacae strains. Nevertheless, there was a significant relationship between the PMQR gene and ESBL-positive isolates. Therefore, special attention should be paid to molecular epidemiological studies on antibiotic resistance to quinolones and beta-lactamases in these strains.
Collapse
Affiliation(s)
- Mandana Afsharian
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Asadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Camellia Danesh
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Sedighi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kohsar Karimi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nooshin Miladi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Miladi
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Azizi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nahid Madadi-Goli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Kamal Ahmadi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hossein Zamanian
- Department of Infectious Disease, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
4
|
Lee KY, Lavelle K, Huang A, Atwill ER, Pitesky M, Li X. Assessment of Prevalence and Diversity of Antimicrobial Resistant Escherichia coli from Retail Meats in Southern California. Antibiotics (Basel) 2023; 12:antibiotics12040782. [PMID: 37107144 PMCID: PMC10135137 DOI: 10.3390/antibiotics12040782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Retail meat products may serve as reservoirs and conduits for antimicrobial resistance, which is frequently monitored using Escherichia coli as indicator bacteria. In this study, E. coli isolation was conducted on 221 retail meat samples (56 chicken, 54 ground turkey, 55 ground beef, and 56 pork chops) collected over a one-year period from grocery stores in southern California. The overall prevalence of E. coli in retail meat samples was 47.51% (105/221), with E. coli contamination found to be significantly associated with meat type and season of sampling. From antimicrobial susceptibility testing, 51 isolates (48.57%) were susceptible to all antimicrobials tested, 54 (51.34%) were resistant to at least 1 drug, 39 (37.14%) to 2 or more drugs, and 21 (20.00%) to 3 or more drugs. Resistance to ampicillin, gentamicin, streptomycin, and tetracycline were significantly associated with meat type, with poultry counterparts (chicken or ground turkey) exhibiting higher odds for resistance to these drugs compared to non-poultry meats (beef and pork). From the 52 E. coli isolates selected to undergo whole-genome sequencing (WGS), 27 antimicrobial resistance genes (ARGs) were identified and predicted phenotypic AMR profiles with an overall sensitivity and specificity of 93.33% and 99.84%, respectively. Clustering assessment and co-occurrence networks revealed that the genomic AMR determinants of E. coli from retail meat were highly heterogeneous, with a sparsity of shared gene networks.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|