1
|
Alvarado-Rodríguez M, Quesada-Gómez C. Antimicrobial resistance profiles of Clostridium species isolated from post-traumatic infections in a Costa Rican hospital. Anaerobe 2025; 93:102957. [PMID: 40139651 DOI: 10.1016/j.anaerobe.2025.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
This study analyzed antimicrobial resistance in 119 Clostridium species isolates collected at a Costa Rican trauma hospital (2018-2022). Isolates were identified using MALDI-TOF, and antimicrobial susceptibility was assessed by E-test. C. perfringens, C. tertium, and Paeniclostridium sordellii were most prevalent species. All isolates were susceptible to amoxicillin-clavulanic acid, linezolid, and metronidazole; however, resistance rates of 20 % to vancomycin and 25 % to clindamycin were observed. C. sphenoides showed the highest minimum inhibitory concentration values. Based on these findings, empirical treatment strategies at the hospital now prioritize amoxicillin-clavulanic acid, linezolid, and metronidazole, while reducing reliance on clindamycin due to observed resistance patterns.
Collapse
Affiliation(s)
- Mariela Alvarado-Rodríguez
- Laboratorio Clínico y Banco de Sangre, Universidad de Costa Rica, San José, Costa Rica; Programa de Posgrado en Especialidades en Microbiología, SEP, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Programa de Posgrado en Especialidades en Microbiología, SEP, Universidad de Costa Rica, San José, Costa Rica; Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
2
|
Cai X, Peng Y, Yang G, Feng L, Tian X, Huang P, Mao Y, Xu L. Populational genomic insights of Paraclostridium bifermentans as an emerging human pathogen. Front Microbiol 2023; 14:1293206. [PMID: 38029151 PMCID: PMC10665999 DOI: 10.3389/fmicb.2023.1293206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Paraclostridium bifermentans (P.b) is an emerging human pathogen that is phylogenomically close to Paeniclostridium sordellii (P.s), while their populational genomic features and virulence capacity remain understudied. Here, we performed comparative genomic analyses of P.b and compared their pan-genomic features and virulence coding profiles to those of P.s. Our results revealed that P.b has a more plastic pangenome, a larger genome size, and a higher GC content than P.s. Interestingly, the P.b and P.s share similar core-genomic functions, but P.b encodes more functions in nutrient metabolism and energy conversion and fewer functions in host defense in their accessory-genomes. The P.b may initiate extracellular infection processes similar to those of P.s and Clostridium perfringens by encoding three toxin homologs (i.e., microbial collagenase, thiol-activated cytolysin, phospholipase C, which are involved in extracellular matrices degradation and membrane damaging) in their core-genomes. However, P.b is less toxic than the P.s by encoding fewer secretion toxins in the core-genome and fewer lethal toxins in the accessory-genome. Notably, P.b carries more toxins genes in their accessory-genomes, particularly those of plasmid origin. Moreover, three within-species and highly conserved plasmid groups, encoding virulence, gene acquisition, and adaptation, were carried by 25-33% of P.b strains and clustered by isolation source rather than geography. This study characterized the pan-genomic virulence features of P.b for the first time, and revealed that P. bifermentans is an emerging pathogen that can threaten human health in many aspects, emphasizing the importance of phenotypic and genomic characterizations of in situ clinical isolates.
Collapse
Affiliation(s)
- Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Gongli Yang
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Lijuan Feng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaojuan Tian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Huang
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5994033. [PMID: 35571251 PMCID: PMC9098347 DOI: 10.1155/2022/5994033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022]
Abstract
We presented a low-cost, eco-friendly, and efficient bacterium-mediated synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing Paraclostridium benzoelyticum strain 5610 as a capping and reducing agent. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray, and UV-vis spectroscopy were used to physiochemically characterize the biosynthesized ZnO-NPs. A major narrow peak at 441 nm was observed using UV-visible spectroscopy, verifying the presence of nanoparticles. According to SEM and TEM studies, the average dimensions of ZnO-NPs was 50 nm. The crystal size of 48.22 nm was determined by XRD analysis. FTIR analysis confirmed the presence of various reducing metabolites on the surface of ZnO-NPs. The synthesized nanoparticles were investigated for biological activity against Helicobacter suis, Helicobacter bizzozeronii, Helicobacter felis, and Helicobacter salomonis. Helicobacter suis was the most vulnerable strain, with an inhibitory zone of
mm at 5 mg/mL dosage. The anti-inflammatory and the findings of the rat paw edema experiments revealed that the bacterium-mediated ZnO-NPs had a strong inhibitory action. In the arthritis model, the solution of ZnO-NPs showed
% inhibitory effect of edema after 21 days when linked with that of the standard drug. In the antidiabetic assay, ZnO-NPs sharply reduced glucose level in STZ-induced diabetic mice. In this study, the particle biocompatibility by human red blood cells was also determined. Keeping in view the biological importance of ZnO-NPs, we may readily get the conclusion that Paraclostridium benzoelyticum strain 5610-mediated ZnO-NPs will be a prospective antidiabetic, antibacterial, antiarthritic, and anti-inflammatory agent in vivo experimental models and can be used as a potent antidiabetic drug.
Collapse
|
4
|
Antimicrobial Susceptibility and Clinical Findings of Anaerobic Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11030351. [PMID: 35326814 PMCID: PMC8944802 DOI: 10.3390/antibiotics11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
|