1
|
Ahmed MO, Abouzeed YM, Daw MA. Global initiatives to phase-out colistin use in food-producing animals. Open Vet J 2025; 15:533-540. [PMID: 40201836 PMCID: PMC11974320 DOI: 10.5455/ovj.2025.v15.i2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Colistin (polymyxin E) is a former exclusive veterinary antimicrobial and one of the oldest antibiotics that is currently recognized as one of the highest priority and critically important antimicrobials for human medicine. For food animals, colistin is extensively used for multiple medical and nonmedical purposes, particularly for growth promotion, prophylaxis/metaphylaxis, and therapeutic purposes. As a result, colistin resistance is widespread along the food chain and is linked to multidrug-resistant bacterial infections in humans. Furthermore, human medicine is more reliant on colistin for serious infections in healthcare settings. As a result, different types of national bans/restrictions in food- producing animals have been implemented around the world. Conclusions The testimonies of 29 countries representing global initiatives to phase-out colistin use in animal production.
Collapse
Affiliation(s)
- Mohamed Omar Ahmed
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Yousef M. Abouzeed
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Mohamed Ali Daw
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
2
|
Yoginath Bhambure S, E Costa LIC, Gatty AM, Manjunatha KG, Vittal R, Sannejal AD. Unveiling the traits of antibiotic resistance and virulence in Escherichia coli obtained from poultry waste. Braz J Microbiol 2024; 55:2997-3007. [PMID: 38809497 PMCID: PMC11405593 DOI: 10.1007/s42770-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotic resistance and virulence factors in avian pathogenic Escherichia coli (APEC) have become significant concerns, contributing to adverse environmental effects. The extensive use of antibiotics in poultry farming has resulted in the emergence of antibiotic-resistant APEC strains. This study prioritizes the molecular screening of APEC to uncover their antibiotic resistance and virulence attributes, with specific attention to their environmental impact. To address the imperative of understanding APEC pathogenesis, our study analyzed 50 poultry waste samples including 10 poultry litter, 15 fecal matter, 15 wastewater, and 10 anatomical waste samples. For the presence of virulence genes, 35 Escherichia coli isolates were subjected to molecular characterization. Amongst these, 27 were APEC strains demonstrating the presence of at least four virulence genes each. Notably, virulence genes such as fimH, ompA, ybjX, waaL, cvaC, hlyF, iss, ompT, and iroN were observed among all the E. coli isolates. Furthermore, eleven of the APEC strains exhibited resistance to tetracycline, ampicillin, sulphonamides, and fluoroquinolones.These findings highlight the role of APEC as a potential source of environmental pollution serving as a reservoir for virulence and resistance genes. Understanding the dynamics of antibiotic resistance and virulence in APEC is essential due to its potential threat to broiler chickens and the broader population through the food chain, intensifying concerns related to environmental pollution. Recognizing the ecological impact of APEC is essential for developing effective strategies to mitigate environmental pollution and safeguard the health of ecosystems and human populations.
Collapse
Affiliation(s)
- Sahil Yoginath Bhambure
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Lakiesha Inacia Coelho E Costa
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Ashwitha M Gatty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Kavitha Guladahalli Manjunatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Rajeshwari Vittal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India
| | - Akhila Dharnappa Sannejal
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Paneer campus, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
3
|
Perrin-Guyomard A, Houée P, Lucas P, Felten A, Le Devendec L, Chauvin C, Kempf I. Prevalence and molecular epidemiology of mcr-mediated colistin-resistance Escherichia coli from healthy poultry in France after national plan to reduce exposure to colistin in farm. Front Microbiol 2023; 14:1254122. [PMID: 37869671 PMCID: PMC10587439 DOI: 10.3389/fmicb.2023.1254122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Within the 2007-2014 programme for the surveillance of antimicrobial resistance (AMR) in livestock in France, mcr-1 prevalence average in commensal Escherichia coli was found to be 5.9% in turkeys and 1.8% in broilers, indicating that mobile colistin resistance had spread in farm animals. In 2017, the French national Ecoantibio2 plan was established to tackle AMR in veterinary medicine, with the objective of a 50% reduction in exposure to colistin in farm animals within 5 years (from 2014-2015 to 2020). Our objective was to update data concerning the prevalence and molecular epidemiology of colistin resistance, in consideration of colistin sales in poultry production in France. Methods Antimicrobial susceptibility of commensal E. coli isolated from broilers and turkeys at slaughterhouse was determined by broth micro-dilution. The mcr genes were screened by polymerase chain reaction (PCR). Whole genome sequencing (WGS) was used to investigate the genetic diversity of colistin-resistant isolates. Transformation experiments enabled identification of the mcr-bearing plasmid replicon types. The correlation between prevalence of colistin resistance and colistin usage data was explored statistically. Results and discussion In 2020, in France, the resistance prevalence to colistin in poultry production was 3% in turkeys and 1% in broilers, showing a significant highly positive correlation with a -68% decrease of poultry exposure to colistin since 2014. Only the mcr-1 gene was detected among the colistin-resistant E. coli. More than 80% of isolates are multi-drug resistant with 40% of isolates originating from turkeys and 44% originating from broilers co-resistant to the critically important antimicrobial ciprofloxacin. Most of the strains had no clonal relationship. The mcr gene was located in different plasmid types, carrying various other AMR genes. The decrease in colistin resistance among poultry in France can be considered a positive outcome of the national action plans for reduced colistin usage.
Collapse
Affiliation(s)
| | - Paméla Houée
- Laboratoire de Fougères, ANSES, Fougères, France
| | - Pierrick Lucas
- Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Arnaud Felten
- Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | | | - Claire Chauvin
- Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, ANSES, Ploufragan, France
| |
Collapse
|
4
|
Mead A, Toutain PL, Richez P, Pelligand L. Targeted dosing for susceptible heteroresistant subpopulations may improve rational dosage regimen prediction for colistin in broiler chickens. Sci Rep 2023; 13:12822. [PMID: 37550398 PMCID: PMC10406827 DOI: 10.1038/s41598-023-39727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/30/2023] [Indexed: 08/09/2023] Open
Abstract
The dosage of colistin for the treatment of enteric E. coli in animals necessitates considering the heteroresistant (HR) nature of the targeted inoculum, described by the presence of a major susceptible population (S1, representing 99.95% of total population) mixed with an initial minor subpopulation of less susceptible bacteria (S2). Herein, we report the 1-compartment population pharmacokinetics (PK) of colistin in chicken intestine (jejunum and ileum) and combined it with a previously established pharmacodynamic (PD) model of HR in E. coli. We then computed probabilities of target attainment (PTA) with a pharmacodynamic target (AUC24h/MIC) that achieves 50% of the maximal kill of bacterial populations (considering inoculums of pure S1, S2 or HR mixture of S1 + S2). For an MIC of 1 mg/L, PTA > 95% was achieved with the registered dose (75,000 IU/kg BW/day in drinking water) for the HR mixture of S1 + S2 E. coli, whether they harboured mcr or not. For an MIC of 2 mg/L (ECOFF), we predicted PTA > 90% against the dominant susceptible sub-population (S1) with this clinical dose given (i) over 24 h for mcr-negative isolates or (ii) over 6 h for mcr-positive isolates (pulse dosing). Colistin clinical breakpoint S ≤ 2 mg/L (EUCAST rules) should be confirmed clinically.
Collapse
Affiliation(s)
- Andrew Mead
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| | - Pierre-Louis Toutain
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Ludovic Pelligand
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
5
|
Karim MR, Zakaria Z, Hassan L, Mohd Faiz N, Ahmad NI. Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. Antibiotics (Basel) 2023; 12:1060. [PMID: 37370378 DOI: 10.3390/antibiotics12061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes (blaTEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for blaTEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Quantitative Pharmacodynamic Characterization of Resistance versus Heteroresistance of Colistin in E. coli Using a Semimechanistic Modeling of Killing Curves. Antimicrob Agents Chemother 2022; 66:e0079322. [PMID: 36040146 PMCID: PMC9487539 DOI: 10.1128/aac.00793-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heteroresistance corresponds to the presence, in a bacterial isolate, of an initial small subpopulation of bacteria characterized by a significant reduction in their sensitivity to a given antibiotic. Mechanisms of heteroresistance versus resistance are poorly understood. The aim of this study was to explore heteroresistance in mcr-positive and mcr-negative Escherichia coli strains exposed to colistin by use of modeling killing curves with a semimechanistic model. We quantify, for a range of phenotypically (susceptibility based on MIC) and genotypically (carriage of mcr-1 or mcr-3 or mcr-negative) different bacteria, a maximum killing rate (Emax) of colistin and the corresponding potency (EC50), i.e., the colistin concentrations corresponding to Emax/2. Heteroresistant subpopulations were identified in both mcr-negative and mcr-positive E. coli as around 0.06% of the starting population. Minority heteroresistant bacteria, both for mcr-negative and mcr-positive strains, differed from the corresponding dominant populations only by the maximum killing rate of colistin (differences for Emax by a factor of 12.66 and 3.76 for mcr-negative and mcr-positive strains, respectively) and without alteration of their EC50s. On the other hand, the resistant mcr-positive strains are distinguished from the mcr-negative strains by differences in their EC50, which can reach a factor of 44 for their dominant population and 22 for their heteroresistant subpopulations. It is suggested that the underlying physiological mechanisms differ between resistance and heteroresistance, with resistance being linked to a decrease in the affinity of colistin for its site of action, whereas heteroresistance would, rather, be linked to an alteration of the target, which will be more difficult to be further changed or destroyed.
Collapse
|
7
|
Um MM, Dupouy V, Arpaillange N, Bièche-Terrier C, Auvray F, Oswald E, Brugère H, Bibbal D. High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics (Basel) 2022; 11:antibiotics11081071. [PMID: 36009940 PMCID: PMC9405437 DOI: 10.3390/antibiotics11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the percentage of healthy veal calves carrying mcr-positive E. coli strains at the time of slaughter in France. Fecal samples were selectively screened for mcr-positive E. coli isolates using media supplemented with colistin. Screening for mcr genes was also carried out in E. coli isolates resistant to critically important antimicrobials used in human medicine recovered from the same fecal samples. Overall, 28 (16.5%) out of the 170 veal calves tested carried mcr-positive E. coli. As some calves carried several non-redundant mcr-positive strains, 41 mcr-positive E. coli were recovered. Thirty-one and seven strains were positive for mcr-1 and mcr-3 genes, respectively, while no strain was positive for the mcr-2 gene. Co-carriage of mcr-1 and mcr-3 was identified in three strains. All mcr-positive E. coli isolates, except one, were multidrug-resistant, with 56.1% being ciprofloxacin-resistant and 31.7% harboring blaCTX-M genes. All mcr-3-positive E. coli carried blaCTX-M genes, mainly blaCTX-M-55. This study highlights the high prevalence of mcr-positive E. coli strains in feces of veal calves at the time of slaughter. It also points out the multidrug (including ciprofloxacin) resistance of such strains and the co-occurrence of mcr-3 genes with blaCTX-M-55 genes.
Collapse
Affiliation(s)
- Maryse Michèle Um
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Véronique Dupouy
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | - Nathalie Arpaillange
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | | | - Frédéric Auvray
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Eric Oswald
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- CHU de Toulouse, Hôpital Purpan, 31 000 Toulouse, France
| | - Hubert Brugère
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Delphine Bibbal
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- Correspondence:
| |
Collapse
|