1
|
Golovchenko M, Opelka J, Vancova M, Sehadova H, Kralikova V, Dobias M, Raska M, Krupka M, Sloupenska K, Rudenko N. Concurrent Infection of the Human Brain with Multiple Borrelia Species. Int J Mol Sci 2023; 24:16906. [PMID: 38069228 PMCID: PMC10707132 DOI: 10.3390/ijms242316906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Collapse
Affiliation(s)
- Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| | - Jakub Opelka
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Veronika Kralikova
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Martin Dobias
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| |
Collapse
|
2
|
Alruwaili Y, Jacobs MB, Hasenkampf NR, Tardo AC, McDaniel CE, Embers ME. Superior efficacy of combination antibiotic therapy versus monotherapy in a mouse model of Lyme disease. Front Microbiol 2023; 14:1293300. [PMID: 38075920 PMCID: PMC10703379 DOI: 10.3389/fmicb.2023.1293300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lyme disease (LD) results from the most prevalent tick-borne infection in North America, with over 476,000 estimated cases annually. The disease is caused by Borrelia burgdorferi (Bb) sensu lato which transmits through the bite of Ixodid ticks. Most cases treated soon after infection are resolved by a short course of oral antibiotics. However, 10-20% of patients experience chronic symptoms because of delayed or incomplete treatment, a condition called Post-Treatment Lyme Disease (PTLD). Some Bb persists in PTLD patients after the initial course of antibiotics and an effective treatment to eradicate the persistent Bb is needed. Other organisms that cause persistent infections, such as M. tuberculosis, are cleared using a combination of therapies rather than monotherapy. A group of Food and Drug Administration (FDA)-approved drugs previously shown to be efficacious against Bb in vitro were used in monotherapy or in combination in mice infected with Bb. Different methods of detection were used to assess the efficacy of the treatments in the infected mice including culture, xenodiagnosis, and molecular techniques. None of the monotherapies eradicated persistent Bb. However, 4 dual combinations (doxycycline + ceftriaxone, dapsone + rifampicin, dapsone + clofazimine, doxycycline + cefotaxime) and 3 triple combinations (doxycycline + ceftriaxone+ carbomycin, doxycycline + cefotaxime+ loratadine, dapsone+ rifampicin+ clofazimine) eradicated persistent Bb infections. These results suggest that combination therapy should be investigated in preclinical studies for treating human Lyme disease.
Collapse
Affiliation(s)
- Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mary B. Jacobs
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Nicole R. Hasenkampf
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Amanda C. Tardo
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Celine E. McDaniel
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|