1
|
He D, Li J, Yu W, Zhang Y, Wang B, Wang T, Yang H, Zhang Y, Chen W, Li Y, Feng F, Hou LA. Deciphering the removal of antibiotics and the antibiotic resistome from typical hospital wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171806. [PMID: 38508266 DOI: 10.1016/j.scitotenv.2024.171806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Hospital wastewater treatment systems (HWTSs) are a significant source and reservoir of antibiotic resistance genes (ARGs) and a crucial hub for transmitting ARGs from clinical to natural environments. However, there is a lack of research on the antibiotic resistome of clinical wastewater in HWTSs. In this study, we used metagenomics to analyze the prevalence and abundance of ARGs in five typical HWTSs. A total of 17 antibiotics from six categories were detected in the five HWTSs; β-lactam antibiotics were found at the highest concentrations, with up to 4074.08 ng·L-1. We further found a total of 21 ARG types and 1106 subtypes of ARGs with the highest percentage of multi-drug resistance genes (evgS, msbA, arlS, and baeS). The most abundant last-resort ARGs were mcr, which were detected in 100 % of the samples. HWTSs effluent is a major pathway for the transmission of last-resort ARGs into urban wastewater networks. The removal of antibiotics, antibiotic-resistant bacteria, and ARGs from HWTSs was mainly achieved by tertiary treatment, i.e., chlorine disinfection, but antibiotics and ARGs were still present in the HWTSs effluent or even increased after treatment. Moreover, antibiotics and heavy metals (especially mercury) in hospital effluents can exert selective pressure for antibiotic resistance, even at low concentrations. Qualitative analyses based on metagenome-assembled genome analysis revealed that the putative hosts of the identified ARGs are widely distributed among Pseudomonas, Acidovorax, Flavobacterium, Polaromonas, and Arcobacter. Moreover, we further assessed the clinical availability of ARGs and found that multidrug ARGs had the highest clinical relevance values. This study provides new impulses for monitoring and removing antibiotics and ARGs in the hospital sewage treatment process.
Collapse
Affiliation(s)
- Dahai He
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Weihai Yu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yingyuan Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weijie Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Faming Feng
- Chutian Liangjiang Environment Co., LTD, Guiyang 550000, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Siri Y, Bumyut A, Precha N, Sirikanchana K, Haramoto E, Makkaew P. Multidrug antibiotic resistance in hospital wastewater as a reflection of antibiotic prescription and infection cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168453. [PMID: 37956835 DOI: 10.1016/j.scitotenv.2023.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Antimicrobial resistance (AMR) is an escalating issue that can render illnesses more difficult to treat if effective antibiotics become resistant. Many studies have explored antibiotic resistance in bacteria (ARB) in wastewater, comparing results with clinical data to ascertain the public health risk. However, few investigations have linked the prevalence of ARB in hospital wastewater (HWW) with these outcomes. This study aimed to bridge this gap by assessing the prevalence of ARB in HWW and its receiving waters. Among the 144 isolates examined, 24 were obtained from each of the six sites (untreated wastewater, aeration tank, sedimentation tank, effluent after disinfection, upstream canal, and downstream canal). A significant portion (87.5 %) belonged to the Enterobacteriaceae family, with Klebsiella pneumoniae as the predominant species (47.9 %). The antimicrobial sensitivity testing (AST) showed that 57.6 % of the isolates were resistant to amoxicillin/clavulanic acid (AMX), the most prevalent antibiotic used within the studied hospital. The total resistance rate before and after treatment was 27.7 % and 28.0 %, respectively, with an overall multi-drug resistance (MDR) rate of 33.3 %. The multiple antibiotic resistance index (MARI) range varied between 0.0 and 0.9. The outpatient ward's three-day mean bacterial infection cases showed a significant association (Spearman's rho = 0.98) with the MARI in the sedimentation tank. Moreover, a strong correlation (Spearman's rho = 0.88) was found between hospital effluent's MARI and the seven-day mean inpatient ward case. These findings indicate that applying wastewater-based epidemiology (WBE) to hospital wastewater could provide valuable insights into understanding ARB contamination across human domains and water cycles. Future studies, including more comprehensive collection data on symptomatic patients and asymptomatic carriers, will be crucial in fully unravelling the complexities between human health and environmental impacts related to AMR.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apirak Bumyut
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|