1
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Emeka PM, Badger-Emeka LI, Thirugnanasambantham K. Virtual Screening and Meta-Analysis Approach Identifies Factors for Inversion Stimulation (Fis) and Other Genes Responsible for Biofilm Production in Pseudomonas aeruginosa: A Corneal Pathogen. Curr Issues Mol Biol 2024; 46:12931-12950. [PMID: 39590364 PMCID: PMC11592581 DOI: 10.3390/cimb46110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial keratitis caused by Pseudomonas aeruginosa is indeed a serious concern due to its potential to cause blindness and its resistance to antibiotics, partly attributed to biofilm formation and cytotoxicity to the cornea. The present study uses a meta-analysis of a transcriptomics dataset to identify important genes and pathways in biofilm formation of P. aeruginosa induced keratitis. By combining data from several studies, meta-analysis can enhance statistical power and robustness, enabling the identification of 83 differentially expressed candidate genes, including fis that could serve as therapeutic targets. The approach of combining meta-analysis with virtual screening and in vitro methods provides a comprehensive strategy for identifying potential target genes and pathways crucial for bacterial biofilm formation and development anti-biofilm medications against P. aeruginosa infections. The study identified 83 candidate genes that exhibited differential expression in the biofilm state, with fis proposed as an ideal target for therapy for P. aeruginosa biofilm formation. These techniques, meta-analysis, virtual screening, and invitro methods were used in combination to diagnostically identify these genes, which play a significant role in biofilms. This finding has highlighted a hallmark target list for P. aeruginosa anti-biofilm potential treatments.
Collapse
Affiliation(s)
- Promise M. Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lorina I. Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
3
|
Manobala T. Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review. Crit Rev Microbiol 2024:1-18. [PMID: 39140129 DOI: 10.1080/1040841x.2024.2390597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various "biofilm-specific factors." These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.
Collapse
Affiliation(s)
- T Manobala
- School of Arts and Sciences, Sai University, Chennai, India
| |
Collapse
|
4
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
5
|
Nobakht MS, Bazyar K, Langeroudi MSG, Mirzaei M, Goudarzi M, Shivaee A. Investigating the Antimicrobial Effects of a Novel Peptide Derived From Listeriolysin S on S aureus, E coli, and L plantarum: An In Silico and In Vitro Study. Bioinform Biol Insights 2024; 18:11779322241252513. [PMID: 38765021 PMCID: PMC11100392 DOI: 10.1177/11779322241252513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Aims The emergence of antibiotic resistance is one of the most significant issues today. Modifying antimicrobial peptides (AMPs) can improve their effects. In this study, the active region of Listeriolysin S (LLS) as a peptidic toxin has been recognized, and its antibacterial properties have been evaluated by modifying that region. Methods After extracting the sequence, the structure of LLS was predicted by PEP-FOLD3. AntiBP and AMPA servers identified its antimicrobial active site. It was modified by adding arginine residue to its 3- and N-terminal regions. Its antimicrobial properties on Staphylococcus aureus, Escherichia coli, and Lactobacillus Plantarum were estimated. Findings The results of AntiBP and AntiBP servers demonstrated that a region of 15 amino acids has the most antimicrobial properties (score = 1.696). After adding arginine to the chosen region, the physicochemical evaluation and antimicrobial properties revealed that the designed peptide is a stable AMP with a positive charge of 4, which is not toxic to human erythrocyte cells and has antigenic properties. The results of in vitro and colony counting indicated that at different hours, it caused a significant reduction in the count of S aureus, E coli, and L Plantarum compared with the control sample. Conclusions Upcoming research implies that identifying and enhancing the active sites of natural peptides can help combat bacteria.
Collapse
Affiliation(s)
- Mojgan Sarabi Nobakht
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Sirjan, Iran
| | - Kaveh Bazyar
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mandana Mirzaei
- Department of Microbiology, Faculty of Science, Islamic Azad University, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kim YM, Park SC, Yoon Y, Jang MK, Lee JR. Effect of tryptophan position and lysine/arginine substitution in antimicrobial peptides on antifungal action. Biochem Biophys Res Commun 2024; 704:149700. [PMID: 38401304 DOI: 10.1016/j.bbrc.2024.149700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Yongsang Yoon
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam, 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea.
| |
Collapse
|
7
|
Song Y, Wang J, Liu X, Yu S, Tang X, Tan H. LC-AMP-F1 Derived from the Venom of the Wolf Spider Lycosa coelestis, Exhibits Antimicrobial and Antibiofilm Activities. Pharmaceutics 2024; 16:129. [PMID: 38276499 PMCID: PMC10818355 DOI: 10.3390/pharmaceutics16010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
In recent years, there has been a growing interest in antimicrobial peptides as innovative antimicrobial agents for combating drug-resistant bacterial infections, particularly in the fields of biofilm control and eradication. In the present study, a novel cationic antimicrobial peptide, named LC-AMP-F1, was derived from the cDNA library of the Lycosa coelestis venom gland. The sequence, physicochemical properties and secondary structure of LC-AMP-F1 were predicted and studied. LC-AMP-F1 was tested for stability, cytotoxicity, drug resistance, antibacterial activity, and antibiofilm activity in vitro compared with melittin, a well-studied antimicrobial peptide. The findings indicated that LC-AMP-F1 exhibited inhibitory effects on the growth of various bacteria, including five strains of multidrug-resistant bacteria commonly found in clinical settings. Additionally, LC-AMP-F1 demonstrated effective inhibition of biofilm formation and disruption of mature biofilms. Furthermore, LC-AMP-F1 exhibited favorable stability, minimal hemolytic activity, and low toxicity towards different types of eukaryotic cells. Also, it was found that the combination of LC-AMP-F1 with conventional antibiotics exhibited either synergistic or additive therapeutic benefits. Concerning the antibacterial mechanism, scanning electron microscopy and SYTOX Green staining results showed that LC-AMP-F1 increased cell membrane permeability and swiftly disrupted bacterial cell membranes to exert its antibacterial effects. In summary, the findings and studies facilitated the development and clinical application of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yuxin Song
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Junyao Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xi Liu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Shengwei Yu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xing Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang 421002, China
| | - Huaxin Tan
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Scoffone VC, Barbieri G, Irudal S, Trespidi G, Buroni S. New Antimicrobial Strategies to Treat Multi-Drug Resistant Infections Caused by Gram-Negatives in Cystic Fibrosis. Antibiotics (Basel) 2024; 13:71. [PMID: 38247630 PMCID: PMC10812592 DOI: 10.3390/antibiotics13010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
People with cystic fibrosis (CF) suffer from recurrent bacterial infections which induce inflammation, lung tissue damage and failure of the respiratory system. Prolonged exposure to combinatorial antibiotic therapies triggers the appearance of multi-drug resistant (MDR) bacteria. The development of alternative antimicrobial strategies may provide a way to mitigate antimicrobial resistance. Here we discuss different alternative approaches to the use of classic antibiotics: anti-virulence and anti-biofilm compounds which exert a low selective pressure; phage therapies that represent an alternative strategy with a high therapeutic potential; new methods helping antibiotics activity such as adjuvants; and antimicrobial peptides and nanoparticle formulations. Their mechanisms and in vitro and in vivo efficacy are described, in order to figure out a complete landscape of new alternative approaches to fight MDR Gram-negative CF pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.B.); (S.I.); (G.T.)
| |
Collapse
|
9
|
Bouhrour N, van der Reijden TJK, Voet MM, Schonkeren-Ravensbergen B, Cordfunke RA, Drijfhout JW, Bendali F, Nibbering PH. Novel Antibacterial Agents SAAP-148 and Halicin Combat Gram-Negative Bacteria Colonizing Catheters. Antibiotics (Basel) 2023; 12:1743. [PMID: 38136778 PMCID: PMC10741160 DOI: 10.3390/antibiotics12121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The antibiotic management of catheter-related infections (CRIs) often fails owing to the emergence of antimicrobial-resistant strains and/or biofilm/persister apparitions. Thus, we investigated the efficacy of two novel antimicrobial agents, i.e., the synthetic peptide SAAP-148 and the novel antibiotic halicin, against Gram-negative bacteria (GNB) colonizing catheters. The antibacterial, anti-biofilm, and anti-persister activities of both agents were evaluated against Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae strains. The enrolled strains were isolated from catheters and selected based on their resistance to at least three antibiotic classes and biofilm formation potential. Furthermore, the hemolysis and endotoxin neutralization abilities of these agents were explored. The bactericidal activity of both agents was reduced in urine and plasma as compared to buffered saline. In a dose-dependent manner, SAAP-148 and halicin reduced bacterial counts in 24 h preformed biofilms on silicone elastomer discs and eliminated persisters originating from antibiotic-exposed mature 7-day biofilms, with halicin being less effective than SAAP-148. Importantly, SAAP-148 and halicin acted synergistically on E. coli and K. pneumoniae biofilms but not on A. baumannii biofilms. The peptide, but not halicin, decreased the production of IL-12p40 upon exposure to UV-killed bacteria. This preliminary study showed that SAAP-148 and halicin alone/in combination are promising candidates to fight GNB colonizing catheters.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Tanny J. K. van der Reijden
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Michella M. Voet
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Bep Schonkeren-Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (R.A.C.); (J.W.D.)
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (R.A.C.); (J.W.D.)
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (T.J.K.v.d.R.); (M.M.V.); (B.S.-R.); (P.H.N.)
| |
Collapse
|
10
|
Park SC, Lee JK, Kim YM, Lee JR. Effects of structural changes on antibacterial activity and cytotoxicity due to proline substitutions in chimeric peptide HnMc. Biochem Biophys Res Commun 2023; 679:139-144. [PMID: 37696067 DOI: 10.1016/j.bbrc.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Owing to the rapidly increasing emergence of multidrug-resistant pathogens, antimicrobial peptides (AMPs) are being explored as next-generation antibiotics. However, AMPs present in nature are highly toxic and exhibit low antibacterial activity. Simple modifications, such as amino acid substitution, can enhance antimicrobial activity and cell selectivity. Herein, we show that HnMc-W, substituted by the Phe1Trp analog of HnMc, a chimeric peptide, resulted in membranolytic antibacterial action and enhanced salt tolerance, whereas HnMc-WP1 with one Ser9Pro substitution resulted in a proline-kink helical structure that increased salt-tolerant antibacterial effects and reduced cytotoxicity. In addition, the HnMc-WP2 peptide, designed with a PXXP motif, had a flexible central hinge in its α-helical structure due to the introduction of two Pro and two Gln (X positions, by deletion of two Gln at positions 16 and 17) residues instead of Ser at position. HnMc-WP2 exhibited excellent antibacterial effects without cytotoxicity in vitro. Moreover, its potent antibacterial activity was demonstrated in a drug-resistant Pseudomonas aeruginosa-infected mouse model in vivo. Our findings provide valuable information for the design of peptides with high antibacterial activity and cell selectivity.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
11
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
12
|
Botelho Sampaio de Oliveira K, Lopes Leite M, Albuquerque Cunha V, Brito da Cunha N, Luiz Franco O. Challenges and advances in antimicrobial peptide development. Drug Discov Today 2023; 28:103629. [PMID: 37230283 DOI: 10.1016/j.drudis.2023.103629] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Microbial resistance is a major concern for public health worldwide, mainly because of the inappropriate use of antimicrobials. In this scenario, antimicrobial peptides (AMPs) have emerged as a potential therapeutic alternative means by which to control infectious diseases, because of their broad spectrum of action. However, some challenges can make their clinical application problematic, including metabolic instability and toxicity. Here, we provide a clear description of AMPs as promising molecules for the development of unusual antimicrobial drugs. We also describe current strategies used to overcome the main difficulties related to AMP clinical application, including different peptide designs and nanoformulation.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Bloco K, 70.790-900, Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasilia, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|