1
|
Mitsuwan W, Boripun R, Saengsawang P, Intongead S, Boonplu S, Chanpakdee R, Morita Y, Boonmar S, Rojanakun N, Suksriroj N, Ruekaewma C, Tenitsara T. Multidrug Resistance, Biofilm-Forming Ability, and Molecular Characterization of Vibrio Species Isolated from Foods in Thailand. Antibiotics (Basel) 2025; 14:235. [PMID: 40149046 PMCID: PMC11939528 DOI: 10.3390/antibiotics14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Vibrio species are common foodborne pathogens that cause gastrointestinal tract inflammation. Multidrug resistance (MDR) in Vibrio spp. is a global health concern, especially in aquaculture systems and food chain systems. This study aimed to detect Vibrio contamination in food collected from 14 markets in Nakhon Si Thammarat, Thailand, and determine their antibiotic susceptibility. METHODS One hundred and thirty-six food samples were investigated for Vibrio contamination. All isolates were tested for antibiogram and biofilm-forming ability. Moreover, the ceftazidime or cefotaxime resistance isolates were additionally investigated for extended-spectrum β-lactamase (ESBL) producers. The isolates were additionally examined for the presence of antibiotic resistance genes. The ESBL-suspected isolates with moderate-to-high biofilm-forming ability were further analyzed for their whole genome. RESULTS The prevalence of Vibrio contamination in food samples was 42.65%, with V. parahaemolyticus demonstrating the highest prevalence. Most isolates were resistant to β-lactam antibiotics, followed by aminoglycosides. The overall MDR of isolated Vibrio was 18.29%, with an average multiple antibiotic resistance (MAR) index of 16.41%. Most isolates were found to have β-lactam resistance-related genes (blaTEM) for 41.46%, followed by aminoglycoside resistance genes (aac(6')-Ib) for 18.29%. Most Vibrio showed moderate to strong biofilm-forming ability, particularly in MDR isolates (92.86%). Two ESBL-suspected isolates, one V. parahaemolyticus isolate and one V. navarrensis, were sequenced. Interestingly, V. parahaemolyticus was an ESBL producer that harbored the blaCTX-M-55 gene located in the mobile genetic element region. While V. navarrensis was not ESBL producer, this isolate carried the blaAmpC gene in the region of horizontal gene transfer event. Remarkably, the Inoviridae sp. DNA integration event was present in two Vibrio genomes. CONCLUSIONS These findings impact the understanding of antibiotic-resistant Vibrio spp. in food samples, which could be applied for implementing control measures in aquaculture farming and food safety plans.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sutsiree Intongead
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Sumaree Boonplu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Rawiwan Chanpakdee
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Yukio Morita
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Japan;
| | - Sumalee Boonmar
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napapat Rojanakun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Natnicha Suksriroj
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Chollathip Ruekaewma
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Titima Tenitsara
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| |
Collapse
|
2
|
Almatroudi A. Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. BIOLOGY 2025; 14:165. [PMID: 40001933 PMCID: PMC11852148 DOI: 10.3390/biology14020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Healthcare-associated infections pose a significant global health challenge, negatively impacting patient outcomes and burdening healthcare systems. A major contributing factor to healthcare-associated infections is the formation of biofilms, structured microbial communities encased in a self-produced extracellular polymeric substance matrix. Biofilms are critical in disease etiology and antibiotic resistance, complicating treatment and infection control efforts. Their inherent resistance mechanisms enable them to withstand antibiotic therapies, leading to recurrent infections and increased morbidity. This review explores the development of biofilms and their dual roles in health and disease. It highlights the structural and protective functions of the EPS matrix, which shields microbial populations from immune responses and antimicrobial agents. Key molecular mechanisms of biofilm resistance, including restricted antibiotic penetration, persister cell dormancy, and genetic adaptations, are identified as significant barriers to effective management. Biofilms are implicated in various clinical contexts, including chronic wounds, medical device-associated infections, oral health complications, and surgical site infections. Their prevalence in hospital environments exacerbates infection control challenges and underscores the urgent need for innovative preventive and therapeutic strategies. This review evaluates cutting-edge approaches such as DNase-mediated biofilm disruption, RNAIII-inhibiting peptides, DNABII proteins, bacteriophage therapies, antimicrobial peptides, nanoparticle-based solutions, antimicrobial coatings, and antimicrobial lock therapies. It also examines critical challenges associated with biofilm-related healthcare-associated infections, including diagnostic difficulties, disinfectant resistance, and economic implications. This review emphasizes the need for a multidisciplinary approach and underscores the importance of understanding biofilm dynamics, their role in disease pathogenesis, and the advancements in therapeutic strategies to combat biofilm-associated infections effectively in clinical settings. These insights aim to enhance treatment outcomes and reduce the burden of biofilm-related diseases.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Nguyen KCT, Truong PH, Thi HT, Ho XT, Nguyen PV. Prevalence, multidrug resistance, and biofilm formation of Vibrio parahaemolyticus isolated from fish mariculture environments in Cat Ba Island, Vietnam. Osong Public Health Res Perspect 2024; 15:56-67. [PMID: 38481050 PMCID: PMC10982652 DOI: 10.24171/j.phrp.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a major foodborne pathogen in aquatic animals and a threat to human health worldwide. This study investigated the prevalence, antimicrobial resistance, antimicrobial resistance genes (ARGs), and biofilm formation of V. parahaemolyticus strains isolated from fish mariculture environments in Cat Ba Island, Vietnam. METHODS In total, 150 rearing water samples were collected from 10 fish mariculture farms in winter and summer. A polymerase chain reaction assay was used to identify V. parahaemolyticus, its virulence factors, and ARGs. The antimicrobial resistance patterns and biofilm formation ability of V. parahaemolyticus strains were investigated using the disk diffusion test and a microtiter plate-based crystal violet method, respectively. RESULTS Thirty-seven V. parahaemolyticus isolates were recovered from 150 samples. The frequencies of the tdh and trh genes among V. parahaemolyticus isolates were 8.1% and 21.6%, respectively. More than 90% of isolates were susceptible to ceftazidime, cefotaxime, and chloramphenicol, but over 72% were resistant to ampicillin, tetracycline, and erythromycin. Furthermore, 67.57% of isolates exhibited multidrug resistance. The presence of ARGs related to gentamicin (aac(3)-IV), tetracycline (tetA) and ciprofloxacin (qnrA) in V. parahaemolyticus isolates was identified. Conversely, no ARGs related to ampicillin or erythromycin resistance were detected. Biofilm formation capacity was detected in significantly more multidrug-resistant isolates (64.9%) than non-multidrug-resistant isolates (18.9%). CONCLUSION Mariculture environments are a potential source of antibiotic-resistant V. parahaemolyticus and a hotspot for virulence genes and ARGs diffusing to aquatic environments. Thus, the prevention of antibiotic-resistant foodborne vibriosis in aquatic animals and humans requires continuous monitoring.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phuc Hung Truong
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hoa Truong Thi
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Xuan Tuy Ho
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phu Van Nguyen
- Corresponding author: Phu Van Nguyen Institute of Biotechnology, Hue University, Nguyen Dinh Tu Street, Phu Thuong, Hue 530000, Vietnam E-mail:
| |
Collapse
|
4
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|