1
|
Roy D, Thakare RP, Chopra S, Panda G. Aromatic or Hetero-aromatic Directly Attached Tri and Tetrasubstituted Methanes: New Chemical Entities as Anti-Infectives. Curr Med Chem 2023; 30:974-998. [PMID: 36017850 DOI: 10.2174/0929867329666220823111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
Abstract
Tri and Tetra-substituted Methanes (TRSMs) are a significant structural motif in many approved drugs and prodrugs. There is increasing use of TRSM units in medicinal chemistry, and many derivatives are specifically designed to make drug-target interactions through new chemical space around TRSM moiety. In this perspective, we describe synthetic challenges for accessing a range of functionalized selective TRSMs and their molecular mechanism of action, especially as anti-infectives. Natural anti-infectives like (+)-Bionectin A, B, (+)-Gliocladine C, Balanocarpol having TRSMs selectively and effectively bind to target proteins in comparison to planar motif having more sp2 carbons perhaps due to conformation which reduces the penalty for conformational entropy with the enhancement of three-dimensionality. Properties of repurposed TRSMs like Almitrine, Ifenprodil, Baricitinib and Remdesivir with their recent progress in COVID-19 therapeutics with their mode of action are also delineated. This perspective is expected to deliver a user guide and reference source for scientists, researchers and academicians in pursuing newly designed TRSMs as therapeutics.
Collapse
Affiliation(s)
- Deblina Roy
- Medicinal & Process Chemistry Division, Gautam Panda, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India
| | - Ritesh P Thakare
- Division of Microbiology, Sidharth Chopra, CSIRCentral Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India
| | - Sidharth Chopra
- Division of Microbiology, Sidharth Chopra, CSIRCentral Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, Gautam Panda, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Schroder V, Radu N, Cornea PC, Coman OA, Pirvu LC, Mohammed MSO, Stefaniu A, Pintilie L, Bostan M, Caramihai MD, Roman V. Studies Regarding the Antimicrobial Behavior of Clotrimazole and Limonene. Antibiotics (Basel) 2022; 11:antibiotics11121816. [PMID: 36551473 PMCID: PMC9774930 DOI: 10.3390/antibiotics11121816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The paper presents the results of the studies performed to establish the effect of the mixtures between limonene and clotrimazole against microbial pathogens involved in dermatological diseases, such as Candida albicans, Staphyloccocus aureus, and Escherichia coli. Preliminary data obtained from the studies performed in microplates revealed a possible synergism between the mixture of clotrimazole and limonene for Staphylococcus aureus. Studies performed "in silico" with programs such as CLC Drug Discovery Workbench and MOLEGRO Virtual Docker, gave favorable scores for docking each compound on a specific binding site for each microorganism. The tests performed for validation, with the clotrimazole (0.1%) and different sources of limonene (1.9% citrus essential oils), showed a synergistic effect on Staphylococcus aureus in the case of the mixtures between clotrimazole and the essential oils of Citrus reticulata or Citrus paradisi. The studies performed on Staphylococcus aureus MRSA showed a synergistic effect between clotrimazole and the essential oils obtained from Citrus bergamia, Citrus aurantium, or Citrus paradisi. In the case of Pseudomonas aeruginosa, essential oils and clotrimazole used alone did not exhibit antimicrobial activities, but the mixtures between clotrimazole and the essential oils of Citrus bergamia or Citrus sinensis exhibited a synergistic antimicrobial effect.
Collapse
Affiliation(s)
- Verginica Schroder
- Faculty of Pharmacy, University Ovidius of Constanta, 900527 Constanta, Romania
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Department of Biotechnology, National Institute of Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
- Correspondence: (N.R.); (M.B.)
| | - Petruta Calina Cornea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Oana Andreia Coman
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania
| | - Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Mohammed Shaymaa Omar Mohammed
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Amalia Stefaniu
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Lucia Pintilie
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, National Institute of Pathology and Biomedical Sciences R&D “Victor Babeș’’, 050096 Bucharest, Romania
- Center of Immunology, Institute of Virology Stefan S. Nicolau, 030304 Bucharest, Romania
- Correspondence: (N.R.); (M.B.)
| | - Mihai Dan Caramihai
- Faculty of Computer Sciences, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Viviana Roman
- Center of Immunology, Institute of Virology Stefan S. Nicolau, 030304 Bucharest, Romania
| |
Collapse
|
3
|
Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine. Polymers (Basel) 2022; 14:polym14173544. [PMID: 36080619 PMCID: PMC9460659 DOI: 10.3390/polym14173544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Raw materials, such as collagen and chitosan, obtained from by-products from the food industry (beef hides and crustacean exoskeletons), can be used to obtain collagen–chitosan composite biomaterials, with potential applications in regenerative medicine. Functionalization of these composite biomaterials is a possibility, thus, resulting in a molecule with potential applications in regenerative medicine, namely clotrimazole (a molecule with antibacterial, antifungal, and antitumor activity), at a mass ratio (collagen–chitosan–clotrimazole) of 1:1:0.1. This functionalized composite biomaterial has great potential for application in regenerative medicine, due to the following properties: (1) it is porous, and the pores formed are interconnected, due to the use of a mass ratio between collagen and chitosan of 1:1; (2) the size of the formed pores is between 500–50 μm; (3) between collagen and chitosan, hydrogen bonds are formed, which ensure the unity of composite biomaterial; (4) the functionalized bio-composite exhibits in vitro antimicrobial activity for Candida albicans, Staphylococcus aureus, and Staphylococcus aureus MRSA; for the latter microorganism, the antimicrobial activity is equivalent to that of the antibiotic Minocycline; (5) the proliferation tests performed on a standardized line of normal human cells with simple or composite materials obtained by lyophilization do not show cytotoxicity in the concentration range studied (10–500) μg/mL.
Collapse
|
4
|
Stevanović NL, Kljun J, Aleksic I, Bogojevic SS, Milivojevic D, Veselinovic A, Turel I, Djuran MI, Nikodinovic-Runic J, Glišić BĐ. Clinically used antifungal azoles as ligands for gold(III) complexes: the influence of the Au(III) ion on the antimicrobial activity of the complex. Dalton Trans 2022; 51:5322-5334. [PMID: 35293926 DOI: 10.1039/d2dt00411a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a search for novel antimicrobial metal-based therapeutic agents, mononuclear gold(III) complexes 1-7 of the general formula [AuCl3(azole)], where azole stands for imidazole (im, 1), 1-isopropylimidazole (ipim, 2), 1-phenylimidazole (phim, 3), clotrimazole (ctz, 4), econazole (ecz, 5), tioconazole (tcz, 6) and voriconazole (vcz, 7) were synthesized, characterized and biologically evaluated. In all complexes, the corresponding azole ligand is monodentately coordinated to the Au(III) via the imidazole or triazole nitrogen atom, while the remaining coordination sites are occupied by chloride anions leading to the square-planar arrangement. In vitro antimicrobial assays showed that the complexation of inactive azoles, imidazole, 1-isopropylimidazole and 1-phenylimidazole, to the Au(III) ion led to complexes 1-3, respectively, with moderate activity against the investigated strains and low cytotoxicity on the human normal lung fibroblast cell line (MRC-5). Moreover, gold(III) complexes 4-7 with clinically used antifungal agents clotrimazole, econazole, tioconazole and voriconazole, respectively, have, in most cases, enhanced antimicrobial effectiveness relative to the corresponding azoles, with the best improvement achieved after complexation of tioconazole (6) and voriconazole (7). The complexes 4-7 and the corresponding antifungal azoles inhibited the growth of dermatophyte Microsporum canis at 50 and 25 μg mL-1. Gold(III) complexes 1-3 significantly reduced the amount of ergosterol in the cell membrane of Candida albicans at the subinhibitory concentration of 0.5 × MIC (minimal inhibitory concentration), while the corresponding imidazole ligands did not significantly affect the ergosterol content, indicating that the mechanism of action of the gold(III)-azole complexes is associated with inhibition of ergosterol biosynthesis. Finally, complexes 5 and 6 significantly reduced the production of pyocyanin, a virulence factor in Pseudomonas aeruginosa controlled by quorum sensing, and increased cell survival after exposure to this bacterium. These findings could be of importance for the development of novel gold(III)-based antivirulence therapeutic agents that attenuate virulence without pronounced effect on the growth of the pathogens, offering a lower risk for resistance development.
Collapse
Affiliation(s)
- Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Sanja Skaro Bogojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Aleksandar Veselinovic
- University of Niš, Faculty of Medicine, Department of Chemistry, Blvd. Dr Zorana Đinđića 81, 18108 Niš, Serbia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
5
|
Voice Prosthesis Coated with Sustained Release Varnish Containing Clotrimazole Shows Long-Term Protection against Candida albicans: An In Vitro Study. Molecules 2021; 26:molecules26175395. [PMID: 34500827 PMCID: PMC8434179 DOI: 10.3390/molecules26175395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Fungal biofilm formation on voice prosthesis (VP) is a major health problem that requires repeated replacement of the prosthesis. Candida albicans is one of the pathogens that frequently inhabits the VP. We proposed that coating VPs with sustained-release varnish (SRV) containing clotrimazole (CTZ) might prevent fungal biofilm formation. The long-term antifungal activities of SRV-CTZ- versus SRV-placebo-coated VPs was tested daily by measuring the inhibition zone of C. albicans seeded on agar plates or by measuring the fungal viability of C. albicans in suspension. The extent of biofilm formation on coated VPs was analyzed by confocal microscopy and scanning electron microscopy. We observed that SRV-CTZ-coated VPs formed a significant bacterial inhibition zone around the VPs and prevented the growth of C. albicans in suspension during the entire testing period of 60 days. Fungal biofilms were formed on placebo-coated VPs, while no significant biofilms were observed on SRV-CTZ-coated VPs. HPLC analysis shows that CTZ is continuously released during the whole test period of 60 days at a concentration above the minimal fungistatic concentration. In conclusion, coating VPs with an SRV-CTZ film is a potential effective method for prevention of fungal infections and biofilm formation on VPs.
Collapse
|
6
|
Antibiotic Susceptibility Profile of Pseudomonas aeruginosa Canine Isolates from a Multicentric Study in Romania. Antibiotics (Basel) 2021; 10:antibiotics10070846. [PMID: 34356767 PMCID: PMC8300837 DOI: 10.3390/antibiotics10070846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Treating infections caused by Pseudomonas aeruginosa is increasingly difficult due to high antibiotic resistance, materialized through the presence of multiple resistance strains, as well as due to rapid development of resistance throughout treatment. The present survey was conducted to investigate the antibiotic susceptibility profile of Pseudomonas aeruginosa pathogens in two University Veterinary hospitals from different geographical regions of Romania (i.e., Southwest Timișoara county and Northeast Iași county) involved in superficial canine infections. A total of 142 swab specimens were collected from dogs with superficial infections (superficial skin infections, otitis externa, and perianal abscess) to assess the presence of Pseudomonas aeruginosa, based on phenotypic and molecular characterization. According to their confirmed morphological and molecular features, 58 samples (40.84%; 58/142) were positive for Pseudomonas aeruginosa (according to their confirmed morphological and molecular features). Antibiotic susceptibility testing for 12 antibiotics was conducted using the Kirby–Bauer disc diffusion method. Drug resistance was observed in the case of all tested antibiotics. The susceptibility rate of P. aeruginosa strains that were tested in this study was in the following order: ceftazidime (53.44%; 31/58), followed by aztreonam (51.72%; 30/58), amikacin (44.82%; 26/58), azithromycin (41.37%; 24/58), gentamicin (37.93%; 22/58), cefepime (36.20%; 21/58), meropenem (25.86%; 13/58), piperacillin-tazobactam (25.86%; 13/58), imipenem (22.41%; 13/158), ciprofloxacin (17.24%; 10/58), tobramycin (8.62; 5/58), and polymyxin B (1.72; 1/58). The results highlight the importance of antibiotic susceptibility testing in Pseudomonas aeruginosa isolates from dogs with superficial infections to use an adequate treatment plan to manage the skin condition and other pathologies (otitis externa and perianal abscesses).
Collapse
|
7
|
Konreddy AK, Rani GU, Lee K, Choi Y. Recent Drug-Repurposing-Driven Advances in the Discovery of Novel Antibiotics. Curr Med Chem 2019; 26:5363-5388. [PMID: 29984648 DOI: 10.2174/0929867325666180706101404] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Drug repurposing is a safe and successful pathway to speed up the novel drug discovery and development processes compared with de novo drug discovery approaches. Drug repurposing uses FDA-approved drugs and drugs that failed in clinical trials, which have detailed information on potential toxicity, formulation, and pharmacology. Technical advancements in the informatics, genomics, and biological sciences account for the major success of drug repurposing in identifying secondary indications of existing drugs. Drug repurposing is playing a vital role in filling the gap in the discovery of potential antibiotics. Bacterial infections emerged as an ever-increasing global public health threat by dint of multidrug resistance to existing drugs. This raises the urgent need of development of new antibiotics that can effectively fight multidrug-resistant bacterial infections (MDRBIs). The present review describes the key role of drug repurposing in the development of antibiotics during 2016-2017 and of the details of recently FDA-approved antibiotics, pipeline antibiotics, and antibacterial properties of various FDA-approved drugs of anti-cancer, anti-fungal, anti-hyperlipidemia, antiinflammatory, anti-malarial, anti-parasitic, anti-viral, genetic disorder, immune modulator, etc. Further, in view of combination therapies with the existing antibiotics, their potential for new implications for MDRBIs is discussed. The current review may provide essential data for the development of quick, safe, effective, and novel antibiotics for current needs and suggest acuity in its effective implications for inhibiting MDRBIs by repurposing existing drugs.
Collapse
Affiliation(s)
- Ananda Kumar Konreddy
- College of Life Sciences and Biotechnology, Korea University, Seoul 136- 713, South Korea
| | - Grandhe Usha Rani
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, South Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820, South Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 136- 713, South Korea
| |
Collapse
|